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Abstract Choosing between two items involves deliberation and comparison of the features of

each item and its value. Such decisions take more time when choosing between options of similar

value, possibly because these decisions require more evidence, but the mechanisms involved are

not clear. We propose that the hippocampus supports deliberation about value, given its well-

known role in prospection and relational cognition. We assessed the role of the hippocampus in

deliberation in two experiments. First, using fMRI in healthy participants, we found that BOLD

activity in the hippocampus increased as a function of deliberation time. Second, we found that

patients with hippocampal damage exhibited more stochastic choices and longer reaction times

than controls, possibly due to their failure to construct value-based or internal evidence during

deliberation. Both sets of results were stronger in value-based decisions compared to perceptual

decisions.

DOI: https://doi.org/10.7554/eLife.46080.001

Introduction
Some decisions involve more deliberation than others. Even seemingly simple decisions such as

those that involve preferences between a pair of familiar items take more time when they involve a

choice between options of similar subjective value. This simple observation holds across many kinds

of decisions, whether they are based on perception of the environment—is the apple green or red?

(Cassey et al., 2013; Gold and Shadlen, 2007; Ratcliff, 2002; Usher and McClelland, 2001)—or

on internal values and preferences—do I prefer a green apple or a red one? (Basten et al., 2010;

Hunt et al., 2012; Krajbich et al., 2010; Milosavljevic et al., 2010). One explanation for why such

decisions take more time is that a commitment to a choice depends on the accumulation of evidence

to a threshold, and when the evidence is weaker, more samples are required to reach such a thresh-

old (Krajbich et al., 2010; Milosavljevic et al., 2010). This idea has been studied extensively in per-

ceptual decisions about dynamic stimuli (e.g. moving dots) for which more time clearly provides

more samples of external evidence, and therefore can improve the accuracy of the decision

(Britten et al., 1996; Britten et al., 1993; Hanks et al., 2015; Mazurek et al., 2003;

Newsome and Paré, 1988; Salzman et al., 1990). It is less clear why the same framework would

apply to value-based decisions, which depend on internal evidence (Krajbich et al., 2010;

Milosavljevic et al., 2010). In such cases, it is not known what the source of the evidence is and why

more samples should be required to decide between options that are close in value.
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We sought to understand the processes involved in deliberation when making value-based deci-

sions. Our central hypothesis is that the hippocampus plays a key role in this deliberation process,

contributing to the comparison between items and the construction of internal samples of evidence

bearing on the decision.

This hypothesis is guided by several observations. First, extensive research demonstrates that the

hippocampus is necessary for detailed and vivid prospection about future events (Addis and

Schacter, 2008; Buckner, 2010; Hassabis et al., 2007; Klein et al., 2002; Race et al., 2011;

Schacter et al., 2007). This sort of prospection is likely to guide value-based decisions because it

allows a decision-maker to imagine the detailed outcome of each choice option. Second, and more

broadly, the hippocampus is known to contribute to relational encoding (Cohen and Eichenbaum,

1993; Horner and Burgess, 2013), a term coined by Cohen and Eichenbaum (1993) to capture the

essential role of the hippocampus across many cognitive processes that involve flexible comparison

and association between distinct items and features (for reviews, see Barry and Maguire, 2019;

Davachi, 2006; Eichenbaum, 2000; Eichenbaum, 2018; Konkel and Cohen, 2009; Palombo et al.,

2015a; Shohamy and Turk-Browne, 2013). This relational function of the hippocampus is thought

to underlie its well-known role in episodic memory, but the comparison of multiple dimensions of

items and their relation to each other is also likely to help guide deliberation during decision making

by supplying internal evidence about each option. Recent studies have indeed linked hippocampal-

based mnemonic processes to choice behavior by demonstrating that the hippocampus is involved

in decisions that explicitly depend on memory by requiring participants to use novel associations

acquired in the experiment (Barron et al., 2013; Gluth et al., 2015; Wimmer and Shohamy, 2012).

However, a critical open question remains about whether the hippocampus also contributes to

seemingly simple decisions—between two highly familiar items—without the explicit demand to use

memory.

We conducted two experiments to address this question. First, we conducted an fMRI study in

healthy young participants while they made decisions based on well-established subjective value

(fMRI; Experiment 1). We reasoned that if the hippocampus supports deliberation, then longer deci-

sion times should be related to more engagement of the hippocampus. Second, to test whether the

hippocampus plays a causal role in resolving value-based decisions, we tested amnesic patients with

damage to the hippocampus and surrounding medial temporal lobe (MTL) as well as age-, educa-

tion-, and verbal IQ-matched healthy controls (Patients; Experiment 2). Although a choice between

two familiar items is not typically thought to depend on the hippocampal memory system

(Bartra et al., 2013; Padoa-Schioppa and Assad, 2006; Platt and Plassmann, 2014; Rangel and

Clithero, 2014; Rangel et al., 2008), we reasoned that amnesic patients may nonetheless show dif-

ferences in the way they deliberate about simple value-based decisions. Amnesic patients could take

less time because their decisions involve less deliberation, or they could take more time because

they try unsuccessfully to deliberate using evidence derived from relational mechanisms. In the latter

case, the extra time would not improve their decisions.

In both experiments, participants performed a value-based decision task in which they made a

series of choices between two familiar food items (Figure 1). The subjective value of each individual

item was determined for each participant using an auction procedure in advance (see

Materials and methods), so that we could systematically vary the difference in value between the

two items (i.e. DValue) during the decision task (see also Grueschow et al., 2015; Krajbich et al.,

2010; Milosavljevic et al., 2010; Polanı́a et al., 2015). The same participants also took part in a

control condition in which they made perceptual decisions about the dominant color of a dynamic

random dot display (Figure 1 and Figure 1—video 1). The perceptual comparison task solicits the

same choice and reaction time behavior but is based on external sensory input.

In Experiment 1, we found that decision time in the value-based decision task was longer when

the choice options were closer in value, as expected (Krajbich et al., 2010; Milosavljevic et al.,

2010; Polanı́a et al., 2015). We also found that reaction times correlated with hippocampal BOLD

activity, and this effect was localized to regions of the hippocampus that showed activity related to

memory retrieval, independently identified in the same participants. In Experiment 2, we found that

amnesic patients were somewhat more stochastic and much slower when making value-based deci-

sions. Importantly, despite parallel behavioral findings in value-based decisions and perceptual deci-

sions in the healthy controls, both the hippocampal BOLD effects and the impairments in patients
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Figure 1. Experimental tasks. In Experiment 1, healthy participants were scanned with fMRI during three different tasks: a value-based decision task

(top), a perceptual decision task (middle), and a memory recognition task (bottom). In the value-based decision task, participants were presented with

150 pairs of foods that differed on DValue (based on a pre-task auction procedure for rating the items; see Materials and methods). Participants were

told to choose the item that they preferred and that their choice on a randomly selected trial would be honored at the end of the experiment. In the

Figure 1 continued on next page
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were selective to the value-based decision task. Together, these findings establish a critical role for

the hippocampus in value-based decisions about familiar choice options.

Results
We conducted two experiments to test the mechanisms underlying deliberation in value-based deci-

sions. In the first experiment, we scanned healthy young participants with functional MRI while they

performed value-based and perceptual decision tasks. In the second experiment, we tested behavior

in amnesic patients with damage to the hippocampus and surrounding MTL as well as age-, educa-

tion-, and verbal IQ-matched healthy control participants on slightly modified versions of these two

decision tasks (see Materials and methods).

Experiment 1: functional MRI
Behavior in both decision tasks conforms to sequential sampling models
On the perceptual decision task, healthy young participants (n = 30) made more accurate decisions

when the color was more biased toward blue or yellow (Figure 2A, top) and reaction times (RT)

were longer for decisions between options that were more difficult to discriminate (i.e. color coher-

ence near zero, Figure 2A, bottom). Similarly, on the value-based decision task, participants made

decisions more consistent with their subjective valuation when DValue was larger (Figure 2B, top).

RTs were longer for decisions between options for which the magnitude of DValue (|DValue|) was

smaller (Figure 2B, bottom). For both the perceptual and the value-based tasks, choices and RT

were well described by drift diffusion models (Figure 2, solid lines). This observation is consistent

with prior work (Krajbich et al., 2015; Ratcliff and McKoon, 2008; Shadlen and Kiani, 2013) and

with the proposal that both types of decisions arise through a process of sequential sampling that

stops when the accumulation of evidence satisfies a threshold or bound. The choice functions and

range of RT were comparable in the two tasks, as were the goodness of fits (for model parameter

estimates, see Figure 2—source data 1; for individual participant fits, see Figure 2—figure supple-

ment 1). Some of the differences between the fits, apparent by eye, are attributed to the different

scales of evidence strength in the two tasks (see Figure 2—figure supplement 2). We considered

simpler parameterizations of the model, but the full model presented here produced a better fit

compared to a model with no power law (BIC = 19.45), and a better fit compared to a model with

no power law and flat bounds (BIC = 168.45).

Timing of value-based decisions is related to brain correlates of memory
We first conducted a whole-brain analysis to identify regions in the brain that show (i) an effect of

RT: a correlation between RT and BOLD activity for the value-based task more so than for the per-

ceptual task, and (ii) a memory effect: greater BOLD activity for successful retrieval of object memo-

ries (using the separate object-memory localizer task, see Materials and methods, Figure 3—figure

supplement 1 and Figure 3—source data 1). Each of these analyses of the fMRI data (RT; memory

retrieval) identified largely separate networks of brain regions (Figure 3—figure supplement

1 and Figure 3—figure supplement 3; Stark and Squire, 2001; Yarkoni et al., 2009). Critically, how-

ever, both showed significant effects in the hippocampus and, as shown in Figure 3 (and Figure 3—

source data 2), the conjunction of these two effects revealed significant shared BOLD activity in the

Figure 1 continued

perceptual decision task, participants were presented with 210 trials of a cloud of flickering blue and yellow dots that varied in the proportion of blue

versus yellow (color coherence). Participants were told to determine whether the display was more blue or more yellow. In the recognition memory

localizer task, participants underwent a standard recognition task using incidental encoding of everyday objects: first, they rated 100 objects (outside of

the scanner); 48 hr later they were presented with a surprise memory test in the scanner, in which ‘old’ objects were intermixed with 100 ‘new’ objects,

one at a time, and participants were asked to indicate whether each object was ‘old’ or ‘new’. In Experiment 2, amnesic patients with MTL damage and

healthy controls performed variants of the value-based and perceptual decision tasks (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.46080.002

The following video is available for figure 1:

Figure 1—video 1. Video of the colored dots stimulus.

DOI: https://doi.org/10.7554/eLife.46080.003
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Perceptual decisions Value-based decisionsA B
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Figure 2. Choices between options that are similar take more time for both perceptual and value-based decisions in Experiment 1. Behavioral results

from 30 young healthy participants for (A) perceptual and (B) value-based decisions. (A) Proportion of blue choices (top) and mean RT (bottom) plotted

as a function of signed color coherence (the logarithm of the odds that a dot is plotted as blue). (B) Proportion of right item preference (top) and mean

RT (bottom) plotted as a function of value difference (the subjective value of the item on the right side of the screen minus the subjective value of the

item on the left) binned into eleven levels. Gray symbols are means (error bars are s.e.m.); solid black lines are fits to drift diffusion models. See

Figure 2—figure supplement 1 for fits to data from individual participants. See Figure 2—figure supplement 3 for parameter recovery analysis.

DOI: https://doi.org/10.7554/eLife.46080.004

The following source data, source code and figure supplements are available for figure 2:

Source code 1. Jupyter notebook with analysis code and output for analyses performed on data from Experiment 1.

DOI: https://doi.org/10.7554/eLife.46080.008

Figure 2 continued on next page
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hippocampus. BOLD activity in memory-related hippocampal regions was more positively correlated

with RT for value-based decisions than perceptual decisions, consistent with our hypothesis that

deliberation associated with resolving preference relies on memory-related hippocampal

mechanisms.

We conducted a series of control analyses to consider possible alternative explanations for the

differential hippocampal activation on value-based versus perceptual tasks. First, the hippocampal

BOLD activity might be related simply to the fact that the value-based decision task makes more

demands on memory because it depends on identifying objects. Indeed, a main effect of value-

based versus perceptual decisions reveals differences in BOLD activity along the ventral stream and

in the medial temporal lobe, including the hippocampus (Figure 3—figure supplement 2A and Fig-

ure 3—source data 3). However, if object identification were the reason for the RT effects, one

would expect to find only a main effect of task—that is, an overall difference between the two tasks

regardless of deliberation time—rather than a significant interaction between task and RT. The

observation of both a main effect of task and an interaction with RT suggests that differences in

object recognition do not account for the finding in the hippocampus. Second, we wondered

whether the hippocampal BOLD activity in the value-based task could be related to the fact that for

some participants there was a difference in the range of RT in the value-based task compared to the

perceptual task. To test this, we repeated the analysis using only trials that shared the same range of

RT on the two tasks (by participant). This analysis revealed a similar result (Figure 3—figure supple-

ment 2B and Figure 3—source data 4), suggesting that the difference in the hippocampus is not

related to differences in RT range.

A third possibility we considered was that the tasks differ in overall levels of difficulty. Indeed, RT

is a function of the difficulty levels in each of the two tasks, but there is also variability in RT within

each level of difficulty, allowing us to address questions about RT while controlling for difficulty.

Therefore, we tested the possibility that difficulty accounted for more of the variance in hippocampal

BOLD activity than RT by repeating the same analysis as in Figure 3 while controlling for the magni-

tude of color coherence and DValue, as well as other potential correlates of RT (e.g. mean of the

pair of values; see Materials and methods). This analysis again revealed RT-related activity in the hip-

pocampus that is greater for value-based than perceptual decisions, even after accounting for other

correlates of RT, both within an anatomical ROI of bilateral hippocampus and at a whole-brain cor-

rected level (Figure 3—figure supplement 3 and Figure 3—source datas 5–8). The conjunction

between the RT effect and the memory map was again found within the hippocampus ROI (Fig-

ure 3—figure supplement 3H). Finally, because our memory encoding task involved value judg-

ments (see Materials and methods), we reran the conjunction analysis using an independent memory

recognition localizer that was not specific to value-based encoding, instead using two independent

meta-analysis maps from neurosynth.org based on the terms ‘autobiographical memory’ and ‘recol-

lection’. The three-way conjunction between the differential effect of RT on BOLD and these two

meta-analysis maps also shows overlap in the hippocampus (Figure 3—figure supplement 4).

Figure 2 continued

Source data 1. Parameter estimates and goodness of fit measures for Experiment 1.

DOI: https://doi.org/10.7554/eLife.46080.009

Source data 2. Trial-level data for the perceptual task in Experiment 1.

DOI: https://doi.org/10.7554/eLife.46080.010

Source data 3. Trial-level data for the value-based task in Experiment 1.

DOI: https://doi.org/10.7554/eLife.46080.011

Figure supplement 1. Data and fits for value-based and perceptual decisions per participant in Experiment 1.

DOI: https://doi.org/10.7554/eLife.46080.005

Figure supplement 2. Comparison of data and fits from Figure 2 after rescaling the units of evidence.

DOI: https://doi.org/10.7554/eLife.46080.006

Figure supplement 3. Parameter recovery analysis.

DOI: https://doi.org/10.7554/eLife.46080.007
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Connectivity between hippocampus
and parietal cortex increases with
value-based decision time
The fMRI results suggest that BOLD activity in

the hippocampus is related to the time it takes to

make value-based decisions. We next explored

the broader neural circuits that interact with the

hippocampus during value-based decisions and

how activity in such circuits varies with RT. We

used a psychophysiological interaction (PPI) anal-

ysis to identify brain regions with activity that

covaried in an RT-dependent manner with the

activity of hippocampal ‘seed’ voxels—that is

those that exhibited RT-dependent activation on

the value-based decision task and memory-

related activation on the memory localizer task.

The strongest RT-dependent correlation was

between the hippocampus and the parietal cor-

tex (superior parietal lobule and precuneus),

showing that functional connectivity between the

hippocampus and parietal cortex was greater for

value-based decisions that took longer (Figure 4

and Figure 4—source data 1).

Experiment 2: behavior in amnesic
patients
The fMRI data reveal that the timing of value-

based decisions is related to BOLD activity in the

hippocampus, suggesting a possible role for the

hippocampus in the deliberation process. How-

ever, fMRI can only tell us about brain activity

correlated with a mental process, leaving open

the critical question of whether the hippocampus

plays a direct, causal role in value-based deci-

sions. Experiment 2 was designed to address this

question by testing value-based decision making

in patients with amnesia subsequent to damage

to the hippocampus and nearby MTL structures.

Our overarching hypothesis is that the hippo-

campus contributes to value-based decisions by

supporting the comparison of options, the simu-

lation of outcomes, and the recollection of inter-

nal evidence. We therefore expected that

damage to the hippocampus would impair this

deliberation process. As noted earlier, we had no

strong prediction regarding whether patients

would show faster or slower RTs in general. We

reasoned that slower RTs might reflect efforts to

search for evidence to resolve decisions, whereas

faster RTs might reflect choices that lack deliber-

ative reasoning altogether. Patients with hippo-

campal damage are not known to have general

impairments in valuation processes and the

experiment only included food items that each

patient fully recognized (see

LY = -28

z = 2.3 z = 3.2

Figure 3. Deliberation time during value-based

decisions is related to activation in the hippocampus.

The figure shows a representative slice at the level of

the hippocampus. The map exploits all three tasks and

shows a comparison of the effect of trial-by-trial RT on

value-based decisions with perceptual decisions,

localized (with a conjunction analysis) to regions of the

brain that also show a memory-retrieval effect. The full

map can be viewed at https://neurovault.org/

collections/BOWMEEOR/images/56727. This effect in

the hippocampus was replicated with a separate

analysis controlling for potential confounds (e.g. mean

value across items in a pair; Figure 3—figure

supplement 3D). Coordinates reported in standard

MNI space. Heatmap color bars range from z-stat = 2.3

to 3.2. The map was cluster corrected for familywise

error rate at a whole-brain level with an uncorrected

cluster-forming threshold of z = 2.3 and corrected

extent threshold of p<0.05.

DOI: https://doi.org/10.7554/eLife.46080.012

The following source data and figure supplements are

available for figure 3:

Source data 1. Activation table for map in Figure 3—

figure supplement 1; successful memory retrieval:

hits > correct rejections.

DOI: https://doi.org/10.7554/eLife.46080.019

Source data 2. Activation table for map in Figure 3;

conjunction between RT effect on BOLD for value-

based greater than perceptual with effect of successful

memory recognition.

DOI: https://doi.org/10.7554/eLife.46080.018

Source data 3. Activation table for map in Figure 3—

figure supplement 2A; overall main effect of value-

based greater than perceptual decisions.

DOI: https://doi.org/10.7554/eLife.46080.020

Source data 4. Activation table for map in Figure 3—

figure supplement 2B; the effect of RT on BOLD for

value-based greater than perceptual decisions,

Figure 3 continued on next page
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Materials and methods). Therefore, we expected

that patients would make choices largely consis-

tent with their subjective valuations. Finally, for

the perceptual task, we expected the patients to

show intact performance, consistent with the

notion that the hippocampus is not needed to

make decisions based on external evidence.

Timing of value-based decisions is
impaired in amnesic patients
We tested six amnesic patients with damage to

the hippocampus and surrounding MTL on the

decision tasks from Experiment 1, slightly modi-

fied to accommodate the patient population

(see Materials ans methods). The patients have

well-characterized memory impairments com-

bined with intact verbal reasoning and IQ (see

Table 1), and have participated in several prior

studies (Foerde et al., 2013; Grilli and Verfael-

lie, 2016; Palombo et al., 2019;

Palombo et al., 2015b). We compared the

patients to fourteen age-, education-, and verbal

IQ-matched healthy participants.

On the perceptual decision task, both

patients and healthy participants made more

accurate decisions when the color was more

strongly biased toward blue or yellow

(Figure 5A, top). The RTs of both the patients

and healthy participants were longer for deci-

sions between options that were more difficult

to discriminate (i.e. color coherence near zero,

Figure 5A, bottom). Patients took about the

same amount of time as healthy controls to

make a perceptual decision and there were no

significant differences between the groups on

accuracy (i.e. slopes of the choice function in

Figure 5A, p=0.28) or RT (interaction between |

color coherence| and group on RT, p=0.18; and

main effect of group on RT, p=0.41). Further, for

both groups, choices and RTs were well-

described by a drift diffusion model (Figure 5A,

solid lines), suggesting that damage to the hippocampus did not impair the patients’ ability to make

decisions that require sequential sampling of external evidence.

In contrast, on the value-based decision task the amnesic patients’ performance diverged from

that of healthy controls. Although the amnesic patients’ choices were clearly governed by DValue

(red sigmoid function, Figure 5B top, simple effect of DValue on choices among amnesics,

p<0.0001), their choices were more stochastic than those of the controls (flatter red sigmoid func-

tion, Figure 5B top, p=0.0008). This observation implies that the amnesic patients were not ran-

domly guessing or forgetting the subjective value of the items but were less sensitive to their

difference. Notably, the patients did not show any obvious differences in their use of the value rating

scale nor in the resulting range of DValues (Figure 5—figure supplement 1). This implies that the

flatter choice function is not explained by a difference in the use of the value rating scale but that

the DValue derived from that scale had less purchase on their choices.

The more striking difference between the two groups was observed on RT during value-based

decisions: the amnesic patients were substantially slower than healthy controls (Figure 5B bottom,

Figure 3 continued

restricted to trials for which the range in RT was

matched between the two decision tasks.

DOI: https://doi.org/10.7554/eLife.46080.021

Source data 5. Activation table for map in Figure 3—

figure supplement 3A; effect of value-based RT on

BOLD.

DOI: https://doi.org/10.7554/eLife.46080.022

Source data 6. Activation table for map in Figure 3—

figure supplement 3B; effect of perceptual RT on BOLD.

DOI: https://doi.org/10.7554/eLife.46080.023

Source data 7. Activation table for map in Figure 3—

figure supplement 3C; value-based RT > perceptual RT.

DOI: https://doi.org/10.7554/eLife.46080.024

Source data 8. Activation table for maps in Figure 3—

figure supplement 3E; Figure 3—figure supplement

3F; Figure 3—figure supplement 3G.

DOI: https://doi.org/10.7554/eLife.46080.025

Source data 9. Activation table for map in Figure 3—

figure supplement 5: Modulated effect of the value of

the chosen food.

DOI: https://doi.org/10.7554/eLife.46080.026

Figure supplement 1. Parametric map of main effect

of hits versus correct rejections during memory

recognition.

DOI: https://doi.org/10.7554/eLife.46080.013

Figure supplement 2. Control analyses to consider

alternative explanations for the differential

hippocampal activation on value-based versus

perceptual tasks.

DOI: https://doi.org/10.7554/eLife.46080.014

Figure supplement 3. Deliberation time during value-

based decisions is related to activation in the

hippocampus using a more complex model.

DOI: https://doi.org/10.7554/eLife.46080.015

Figure supplement 4. Timing of value-based decisions

is related to activation in memory-localized regions of

the hippocampus.

DOI: https://doi.org/10.7554/eLife.46080.016

Figure supplement 5. Value-coding brain regions.

DOI: https://doi.org/10.7554/eLife.46080.017
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p=0.0004). These slower RTs were specific to the value-based compared to the perceptual decision

task (p=0.002 for the interaction between task type and group on RT). In addition, their RTs were

less driven by subjective value ratings (flatter red curve in Figure 5B bottom). This difference

between amnesic patients and healthy controls was statistically reliable (p=0.015, interaction

between |DValue| and group on RT in a mixed effects linear regression, see Materials and methods).

In principle, slower decisions could be a sign of a speed-accuracy tradeoff favoring accuracy, but

that does not appear to be the case, as the patients were both slower and less accurate (i.e. less

consistent with initial subjective values) than the controls. To clarify this point, we calculated an index

of efficiency (IE) for each participant (average accuracy divided by the average RT). The index cap-

tures the extent to which additional time was used to resolve sources of uncertainty that contribute

to stochastic choice behavior. For perceptual decisions, IE did not differ between amnesic patients

z = 2.3 z = 3.2

Figure 4. Timing of value-based decisions is related to functional coupling between the hippocampus and parietal cortex. Lateral (left) and medial

(right) view of a semi-inflated surface of a template brain. PPI results were projected onto the cortical surface. There was a stronger correlation in

activity between the hippocampus and the parietal cortex when value-based decisions took more time. The full map can be viewed at https://

neurovault.org/collections/BOWMEEOR/images/129376. Heatmap color bars range from z-stat = 2.3 to 3.2. The map was cluster corrected for

familywise error rate at a whole-brain level with an uncorrected cluster-forming threshold of z = 2.3 and corrected extent of p<0.05.

DOI: https://doi.org/10.7554/eLife.46080.027

The following source data is available for figure 4:

Source data 1. Activation table for map in Figure 4; PPI for value-based decision trials with hippocampus seed modulated by RT.

DOI: https://doi.org/10.7554/eLife.46080.028

Table 1. Amnesic patient demographic and neuropsychological data.

Patient # Diagnosis Gender Age Edu

WAIS-III WMS-III

BNT FAS L-N sequence Years since onsetVIQ WMI GM VD AD

P01 Hypoxic-ischemic F 67 12 88 75 52 56 55 �1.3 �1.1 -2 27.29

P02 Status epilepticus + left temp. lobectomy M 54 16 93 94 49 53 52 �4.6 �0.96 -1 29.17

P03 Hypoxic-ischemic M 61 14 106 115 59 72 52 0.54 �0.78 1.33 24.18

P04 Hypoxic-ischemic M 65 17 131 126 86 78 86 1.3 0.03 1.33 15.00

P05 Encephalitis M 75 13 99 104 49 56 58 �0.11 �0.5 0.33 5.85

P06 Stroke M 53 20 111 99 60 65 58 1.02 2.1 �0.33 3.45

Age in years at first session; Edu, education in years; WAIS-III, Wechsler Adult Intelligence Scale-III (Wechsler, 1997a); WMS-III, Wechsler Memory Scale-III

(Wechsler, 1997b); VIQ, verbal IQ; WMI, working memory index; GM, general memory; VD, visual delayed; AD, auditory delayed; scores are age-adjusted

such that a score of 100 is the age-adjusted mean with a standard deviation of 15; BNT, Boston Naming Test; FAS, verbal fluency test; L-N, Letter-Number

Sequence. BNT, FAS and L-N scores were z-scored against normative data for each test.

DOI: https://doi.org/10.7554/eLife.46080.029
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Figure 5. Amnesic patients exhibited more stochastic choices and longer reaction times on value-based decisions but not perceptual decisions. (A)

Proportion of blue choices (top) and mean RT (bottom) plotted as a function of signed color coherence, the logarithm of the odds that a dot is plotted

as blue. Data from 14 healthy controls and six amnesic patients (2922 and 1246 trials, respectively). (B) Proportion of right-item preference (top) and

mean RT (bottom) plotted as a function of value difference (right minus left) binned into 11 levels. Data from 14 healthy controls and six amnesic

Figure 5 continued on next page
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and healthy controls (Figure 5C, t17.21 = 0.02, p=0.98, Welch’s t-test), presumably because the

uncertainty originates in the stimulus and its noisy representation by sensory neurons (Britten et al.,

1993; Mante et al., 2013; Shadlen and Newsome, 1998). For value-based decisions, IE was signifi-

cantly lower in the amnesic patients compared to controls (Figure 5D, t11.84 = 4.2, p=0.0007,

Welch’s t-test). This implies that whatever deliberative process the amnesics engaged in to reach

their decisions, it was less efficient than the process used by the controls.

To further characterize differences in the deliberative process between the groups, we evaluated

an alternative to the drift-diffusion model. In this ‘heuristic model’, the decision maker makes (1) fast

choices for items they like strongly, (2) fast choices for an item paired with one they dislike strongly,

and (3) slow stochastic choices when the preference is not resolved by rules 1 and 2 (see

Materials and methods and Figure 5—figure supplement 2). The model is representative of a class

of alternatives that would account for RT and choice based on distinct rules—that is, a break from

sequential sampling with optional stopping. While we found no support for this model in healthy

controls (DDM performs better than this heuristic model, BIC = 537.5), at least one feature of the

RTs from the amnesic patients is consistent with this model (Figure 5—figure supplement 2). This

observation does not provide definitive support for the heuristic above, but it does suggest that the

measurable differences between amnesics and controls in accuracy and RT may be related to a fun-

damental difference in how the amnesics resolve value-based preferences.

Discussion
We found converging evidence from fMRI and patients pointing to a role for the hippocampus in

deliberation between choice options in value-based decisions. In healthy participants, the time it

took to resolve choices between two options was longer for near-value decisions and was correlated

with BOLD activity in the hippocampus. Amnesic patients with damage to the hippocampus were

just as fast as healthy controls to make perceptual decisions but took almost twice as much time to

make value-based decisions. The additional time did not lead to better accuracy; in fact, the

patients’ choices were less accurate (i.e. more stochastic, relative to the values they initially assigned

to the items). Together, these findings link the timing of value-based decisions about highly familiar

options to the hippocampus.

Figure 5 continued

patients (2893 and 1118 trials, respectively). To further summarize these findings, we plot individual average speed-adjusted accuracy, calculated as

average accuracy divided by average RT per participant during (C) perceptual decisions and (D) value-based decisions (here, accuracy is defined as

choices that are consistent with the individuals’ initial value ratings). Circle symbols are data from amnesic patients (red) and healthy age-matched

controls (black). Square symbols are group averages. Error bars are s.e.m. Curves are fits of a bounded drift diffusion model (see

Materials and methods). See Figure 5—figure supplement 4 for fits to data from individual participants, Figure 5—source data 1 for model

parameters fit to data from individual participants, and Figure 5—figure supplement 2 for consideration of an alternative model.

DOI: https://doi.org/10.7554/eLife.46080.030

The following source data, source code and figure supplements are available for figure 5:

Source code 1. Jupyter notebook with analysis code and output for analyses performed on data from Experiment 2.

DOI: https://doi.org/10.7554/eLife.46080.035

Source data 1. Parameter estimates and goodness of fit measures for Experiment 2.

DOI: https://doi.org/10.7554/eLife.46080.036

Source data 2. Trial-level data for the perceptual task in Experiment 2.

DOI: https://doi.org/10.7554/eLife.46080.037

Source data 3. Trial-level data for the value-based task in Experiment 2.

DOI: https://doi.org/10.7554/eLife.46080.038

Figure supplement 1. Distributions of value ratings and resulting DValues used during the choice phase.

DOI: https://doi.org/10.7554/eLife.46080.033

Figure supplement 2. Support for a qualitative prediction of a heuristic decision strategy in the amnesic patient group.

DOI: https://doi.org/10.7554/eLife.46080.034

Figure supplement 3. Brain images for five out of six amnesic patients included in experiment 2.

DOI: https://doi.org/10.7554/eLife.46080.032

Figure supplement 4. Data and fits for value-based and perceptual decisions per participant in Experiment 2.

DOI: https://doi.org/10.7554/eLife.46080.031
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Value-based decisions between highly familiar choice options are typically assumed to rely on

subjective value (Levy and Glimcher, 2012; Rangel et al., 2008; Tversky and Kahneman, 1986).

Such value signals are thought to be supported by the ventromedial prefrontal cortex (vmPFC,

Camille et al., 2011; Fellows, 2016; Fellows and Farah, 2007; Levy and Glimcher, 2011; Padoa-

Schioppa and Assad, 2006). Yet, even when choosing between options that differ greatly in their

subjective value, such choices involve a comparison of the values by way of taking both options, their

relation, and their predicted value, into account (Houston et al., 1999; Tversky, 1972; Voigt et al.,

2017). Resolving the choice between two options with similar value likely requires the generation of

additional information—that is, evidence—to resolve the indecision. This evidence must come from

internal sources and might involve multiple dimensions of comparisons between the options. In that

sense, it may seem obvious that deliberating between even highly familiar options is likely to involve

the sort of relational mechanisms that the hippocampus is known to support.

Our findings suggest that the role of the hippocampus in value-based decisions is almost certainly

more nuanced than memory retrieval of the value associated with each of the items. Prior work sug-

gests that simple object-value associations do not depend on the hippocampus (Neubert et al.,

2015; Reynolds et al., 2001; Rudebeck et al., 2008; Rushworth et al., 2011; Schultz et al., 1997;

Vo et al., 2014). Moreover, it is not obvious why a simple associative memory process would

account for longer deliberation times. Instead, we propose that the hippocampus contributes to

deliberative processes during decision making. Specifically, we propose that deliberation may be

served by the construction of value from internal evidence and engagement in the comparison

between the options. Such a process is likely to also involve evaluation of alternatives and prospec-

tion about future hypothetical experiences. Prior work suggests that all these processes are likely to

engage the hippocampus (Barron et al., 2013; Eichenbaum and Cohen, 2001; Schacter et al.,

2007). Future work will be necessary to evaluate how these different processes interact and whether

their unique contributions may differ under different circumstances.

Our findings extend recent results demonstrating a role for the hippocampus in value-based deci-

sions under conditions in which value information has been experimentally manipulated to depend

on retrieval of new associative memories (Barron et al., 2013; Gluth et al., 2015; Wimmer and

Shohamy, 2012). Recent work has also characterized sampling processes during value-based deci-

sions that are reliant on memory (Bornstein and Norman, 2017; Bornstein et al., 2017;

Duncan and Shohamy, 2016). Our study builds on these findings to implicate the hippocampus

functionally and establish a causal role for the hippocampus in decisions about familiar options for

which value is known. One open question is whether this role varies as a function of the nature of

the items under deliberation. For example, natural versus packaged items may vary in the extent to

which perceptual features reveal their value; the color of an apple is revealing of its sweetness, the

color of a package of chocolate perhaps less so. But ultimately, all such decisions depend on the

transformation of external perceptual input to internal estimates of subjective value bearing on the

relative desirability of the items. It is this deliberative process—beyond the simple item-value associ-

ation—that we posit the hippocampus contributes to.

The pattern of behavior among the amnesic patients provides further insight into how and when

the hippocampus is necessary for value-based decision making. We found that amnesic patients

were somewhat less consistent in their decisions and that they took much longer to make them. A

similar pattern has been shown recently in healthy older adults with mild memory deficits

(Levin et al., 2018). As noted earlier, it is unlikely that amnesic patients simply cannot remember the

value of the items, as their choices are not arbitrary. This suggests that the patients may be relying

on degraded value signals that are coarser than those in controls. Studies of simple valuation have

described general valence signals in neurons in orbitofrontal cortex, striatum, amygdala, and anterior

cingulate cortex that could potentially drive these choices (Figure 3—figure supplement 5;

Hayden et al., 2009; Hikosaka et al., 2014; Padoa-Schioppa and Assad, 2006; Platt and Plass-

mann, 2014; Saez et al., 2017). Interestingly, patients with vmPFC damage also show greater sto-

chasticity in their choices (Camille et al., 2011; Fellows and Farah, 2007; Pelletier and Fellows,

2019), but do not display the slowing in RT during deliberation that we see in the patients with

amnesia due to hippocampal damage. This finding and others (Jones and Wilson, 2005;

Wikenheiser et al., 2017; Wimmer and Büchel, 2016), point to possible complementary roles for

the hippocampus and the vmPFC in guiding value-based decisions (also see, McCormick et al.,
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2018), with the hippocampus possibly supporting evidence-based construction of value and deliber-

ation (Weilbächer and Gluth, 2016).

If patients resolve their choices by accessing a simpler form of value representation, then why do

they take such a long time to reach decisions? We propose that this reflects the patients’ attempt to

engage hippocampal relational mechanisms and their failure to do so. This conclusion is based on a

detailed consideration of the relationship between time, accuracy, and choices. In particular, it may

help to elaborate on an important difference between the decision processes at play in the value

and perceptual decisions we studied. For both tasks, choice and RT were reconciled by fits to drift

diffusion models, indicating that both perceptual and value-based decisions exhibit a systematic

relationship in speed and accuracy as a function of difficulty. In the perceptual task, a sequence of

samples of blue and yellow dots can be converted by the visual system to samples of evidence by

spatially integrating blue or yellow (or the difference) across the stimulus aperture in sampling

epochs governed by the temporal resolution of the color system, which is slower than the frame rate

of the display. These samples arrive in series until the subject terminates the decision. The samples

are independent, identically distributed random values drawn from a distribution with an expectation

(i.e. mean) determined by the stimulus strength and a variance governed by the stochastic proper-

ties of the stimulus and the neurons that represent blue, yellow or blue minus yellow. The accumula-

tion of these noisy samples is analogous to a deterministic drift plus diffusion.

As mentioned earlier, similar logic has been applied to value-based decisions (Krajbich and Ran-

gel, 2011; Milosavljevic et al., 2010; Polanı́a et al., 2015), but the analogy breaks down at the

nature of the evidence samples. One might posit that neurons that represent value provide the sam-

ples of evidence (Rangel et al., 2008; Rangel and Clithero, 2014; Sokol-Hessner et al., 2012).

However, the stimulus provides only one sample of the objects, and there is no reason to think that

the brain would then generate a sequence of independent samples of DValue (Shadlen and Shoh-

amy, 2016). Instead, we reason that the comparison itself triggers constructive thought processes to

provide samples of evidence that bear on evaluation of the items along a dimension. It is hard to

imagine integrating these samples of DValue along different dimensions, although it is possible if

they were converted to some common currency (e.g. Kira et al., 2015). It seems at least equally

likely that each sample leads to a new internal estimate of preference, only to terminate if such a

sample provides a sufficiently compelling preference. Although such a process involves no integra-

tion, the drift diffusion model can be fit to such a process well enough to render these alternatives

indistinguishable (Ditterich, 2006). On this view, the longer RTs in the amnesic patients stem from

their continued effort to generate evidence to resolve the comparison. Accordingly, the greater sto-

chasticity in their choices possibly stems from the fact that they may fail to generate such evidence

and ultimately fall back on a more rudimentary and noisier form of value representation to guide

their choices. We are not committed to this specific interpretation and consider a simple heuristic

strategy that accounts for some aspects of the data (see Figure 5—figure supplement 2).

One limitation of the present study is that we are unable to identify the specific hippocampal-

based process that guides deliberation. We can only observe the manifestation of the process in RT

and its associated changes in hippocampal BOLD activity or the effect of hippocampal damage. In

future work, it will be useful to guide the dimensions of inquiry (e.g. saltiness) and/or construct mem-

ories associated with these dimensions that have discernible effects on BOLD activity. In this study,

we deliberately avoided any possibility of biasing participants to adopt a memory-based strategy to

resolve value preference, as we were interested in testing whether memory spontaneously contrib-

uted to such decisions without instruction or guidance.

The idea that memory supports construction of evidence to guide value-based decisions offers

new insights to our understanding of how decisions are made, as well as the role of the hippocam-

pus in guiding behavior. The finding that the hippocampus supports deliberation between choice

options with similar subjective value addresses a challenge that has long puzzled economists and

philosophers (often referred to as Buridan’s paradox, Chislenko, 2016; Sorensen, 2004). By linking

the hippocampus to choice behavior, this finding also highlights the pervasive and broad role of the

hippocampus in guiding actions and decisions. Research on the hippocampus has typically focused

on its role in supporting the formation of conscious, declarative memories for episodes of one’s life.

The current findings add to a growing shift in this point of view, suggesting that the hippocampus

may serve a more general purpose in guiding behavior by providing behaviorally relevant input

about relational associations to implicitly guide actions and decisions (Chun and Phelps, 1999;
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Eichenbaum and Cohen, 2001; Hannula et al., 2007; Olsen et al., 2016; Palombo et al., 2015a;

Ryan et al., 2000; Schapiro et al., 2014; Shohamy and Turk-Browne, 2013; Wimmer and Shoh-

amy, 2012).

Materials and methods

Human subjects
Experiment 1: young healthy fMRI participants
Thirty-three healthy participants were recruited through fliers posted on campus and the surround-

ing area in New York City. Three participants were excluded from analysis due to excessive motion

during MRI scanning. The final sample consisted of n = 30 (19 female), mean age = 24.7 ± 5.5 and

self-reported Body Mass Index (BMI) = 23 ± 4.5. No statistical method was employed to pre-deter-

mine the sample size. The sample size we chose is similar to that used in previous publications.

All experimental procedures were approved by the Institutional Review Board (IRB) at Columbia

University and all scan participants provided signed informed consent before taking part in the

study.

Experiment 2: amnesic patients and age-matched healthy control
participants
Eight patients with amnesia due to damage to the hippocampus and sixteen age-, education- and

verbal IQ-matched healthy control participants were recruited to participate in a version of the same

study (for details of the differences between the scan study and the patient study, see below). Two

patients and two age-matched healthy control participants were excluded; one patient and one

healthy participant did not perform the perceptual decision task satisfactorily (i.e. they did not tend

to choose the color that was dominant in the stimulus), one healthy participant did not perform the

value-based decision task satisfactorily (i.e. their choices were not consistent with their initial prefer-

ence ratings) and one patient never completed the perceptual decision task. The final sample

included n = 6 patients (one female) with amnesia (see Table 1 for demographic and neuropsycho-

logical data) and n = 14 (6 female) healthy controls matched for age (61.6 ± 10.5), education

(15.7 ± 3.6), and verbal IQ (WAIS-III VIQ = 109.5 ± 10.2). All patients presented with severe antero-

grade and retrograde amnesia. Patients had lower than normal memory scores (two to three stan-

dard deviations below normal as measured by WMS-III, Table 1), but were largely within normal

range for measures of working memory and verbal aptitude. Lesions of five of the MTL patients are

presented in Figure 5—figure supplement 3, either on MRI or CT images. The remaining patient

(P04) had suffered cardiac arrest and could not be scanned due to medical contraindications. MTL

pathology for this patient was inferred based on etiology and neuropsychological profile. For the

patient who suffered encephalitis (P05), clinical MRI was acquired only in the acute phase of illness,

with no visible lesions observed on T1-weighted images. However, T2-flair images demonstrated

bilateral hyperintensities in the hippocampus and MTL cortices, as well as the anterior insula. Within

the MTL, two patients (P03, P06) had lesions restricted to the hippocampus, while three patients

had volume loss extending outside of the hippocampus (P01, P02, P05). For four of the patients

(P02, P03, P05, P06), it was possible to determine that the lesion overlapped with the peak of hippo-

campal activation in the fMRI study. All patients and age-matched healthy participants provided

informed consent in accordance with the Institutional Review Boards at Boston University and the

VA Boston Healthcare System.

Tasks
Experiment 1
The study took place over two sessions. On the first day, participants were not scanned. They were

trained on the perceptual color dots task (details below), received feedback (correct/incorrect) on

each trial during training, and were trained to criterion, defined as 80% or higher accuracy over the

last four blocks of 10 trials. Training consisted of a minimum 200 trials and a maximum 400 trials.

After color dots training, participants underwent incidental encoding for the Memory Localizer task:

they rated 100 neutral objects, presented one at a time on the computer screen, on how much they
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liked that object by placing the cursor along a visual analog scale that ranged from 0 (least) to 10

(most) using the computer mouse. This liking rating task served as a memory encoding phase, fol-

lowed two days later by a surprise memory recognition test in the scanner (details below). The first

study session lasted about 1 hr. When it ended, participants were told to refrain from eating or

drinking anything besides water for four hours before their next appointment. On the second ses-

sion, which took place 2 days after the first session, participants took part in an auction outside of

the scanner. They were then placed in the MRI scanner and performed the food choice task, the

color dots task, and the memory recognition task.

Auction
Participants were endowed with $3, which they used to take part in an auction. The auction followed

Becker-Degroot-Marschak (BDM) rules (Becker et al., 1964). This auction procedure allowed us to

obtain a measure of willingness-to-pay (WTP) for each of 60 appetitive food items per participant

(Plassmann et al., 2007). Participants were presented with one snack item at a time, in random

order, on a computer screen. They placed their bid by moving a cursor on an analog scale that

spanned from $0 to $3 at the bottom of the screen using the computer mouse. The auction was self-

paced, and the next item was presented only after the participant placed his or her bid. After partici-

pants placed bids on all 60 items, they were given a chance to revise their bids to account for adjust-

ments and scaling effects that can occur after participants experience the full food stimulus set.

Participants were presented with each of the 60 items in random order a second time with their orig-

inal bid displayed below and were asked whether they wanted to change their bid. If they clicked

‘NO’, they were presented with the next food item, and their original bid was kept as the WTP for

that item. If participants clicked ‘YES’, the $0 to $3 analog scale was presented and they placed a

new bid using the mouse as before. This new bid was recorded as the final WTP for that item. The

starting location of the cursor along the analog scale was randomized on each trial and the mouse

cursor was reset to the middle of the screen on each trial to prevent participants from simply clicking

through the entire auction phase without deliberation. Participants were told that a single trial would

be drawn at random at the end of the session, and that they could bid any amount of the full $3 for

each food item because the auction repeated in an independent fashion for each of the 60 items.

They were told that their best strategy to win the auction was to bid exactly what each item was

worth to them to purchase from the experimenter at the end of the experiment and that bidding

consistently high or consistently low was a bad strategy. At the end of the session, the computer

generated a counter bid in the form of a random number between $0 and $3 in increments of 25

cents. If the computer bid was higher than the participant’s bid, then he or she lost the auction; if

the participant matched or outbid the computer, he or she was offered to purchase the randomly

drawn food item from the experimenter at the lower price generated by the computer. The outcome

of the auction was played out at the end of the experimental session. After performing the auction

outside the scanner, participants performed the following three tasks in the scanner while functional

brain images were acquired.

Food choice
The 60 food items were rank-ordered based on WTPs obtained during the auction, and 150 unique

pairs made up from the 60 items were formed such that the difference in WTP between the two

items in a pair (i.e. DValue) varied. Each of the 60 items appeared in five different pairs. Pairs were

presented in random order, one pair at a time, with one item on each side of a central fixation cross.

Right/left placement of the higher-value item in a pair was counterbalanced across trials. Participants

were instructed to choose the food they preferred. Participants chose one item on each trial by

pressing one of two buttons on an MRI-compatible button box. They were given up to 3 s to make

their selections. After a choice was made, the selected item was highlighted for 500 ms. If partici-

pants did not make a choice before the 3 s cutoff, the message ‘Please respond faster’ was dis-

played for 500 ms. Trials were separated by a jittered inter-trial-interval (ITI) drawn from an

exponential distribution with a mean of 3, if the value generated was below 1 or above 12, it was

redrawn. The true average of the resulting distribution of ITIs across trials was 3.05 s with an

sd = 2.0 s. Participants were told that they would be given the chosen food on a single randomly

selected trial to eat. Participants were presented with 210 trials total, split into three 70-trial scan
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runs. Runs of the food choice task were interleaved with runs of the color dots task (below). Of the

150 unique pairs, 90 pairs were presented only once and 60 pairs were presented twice. Thus, each

of the 60 food items was presented 7 times in total. Each scan run of the food choice task lasted 7

min.

Color dots
Participants viewed a dynamic random dot display and were asked to determine whether there were

more yellow or blue dots. Dots were presented at random locations within a central circular aperture

(diameter 5 cm) and replaced in each video frame (60 Hz) by new dots (density 16.7 dots.cm�2
.s�1)

at new random positions. Each dot was assigned a color randomly with probability controlled by the

color coherence, C ¼ logðpblue=pyellowÞ, such that pblue ¼
eC

1þeC
and pyellow ¼ 1� pblue. A dot that is not

blue is yellow. Throughout a single trial, C was fixed at a value drawn from a set of 11 possible levels

{�2, –1, �0.5, –0.25, �0.125, 0, 0.125, 0.25, 0.5, 1, 2}. For C>0 (pblue>0:5) a blue choice is graded as

correct regardless of the actual ratio of blue:yellow dots displayed. For C<0 (pyellow>0:5) a yellow

choice is graded as correct regardless of the actual ratio of blue:yellow dots actually displayed. For

C ¼ 0 (pblue ¼ Pyellow ¼ 0:5), the assignment of correct was deemed 0.5. The color strength is jCj.

Participants responded by pressing one of two buttons, with the color-button mapping counter-

balanced across participants. Participants were instructed to make their response as soon as they

had an answer. The stimulus was presented for a maximum of 2.5 s. If they responded within the 2.5

s window, the stimulus disappeared and a central fixation cross reappeared. Intertrial intervals were

generated using the same procedure used for the value-based decision task, resulting in a distribu-

tion mean across trials of 3.04 s with an sd = 2.4. Participants did not receive feedback during the

main data collection, but on session 1 (training; no scanning) they received correct/incorrect feed-

back on each trial. Feedback appeared after a response was made and remained on the screen for

500 ms. If they did not respond within the 2.5 s choice window, a message asking participants to

please respond faster was displayed for 500 ms. Participants were presented with a total of 210 tri-

als, split into three scan runs of 70 trials each. Each scan run of the color dots task lasted 6.5 min.

Memory recognition
Participants were presented with the 100 objects they had rated during session one as well as 100

new objects, randomly intermixed, one object at a time in the middle of the screen. Below the image

of the object and to the right and left of center appeared the words ‘OLD’ and ‘NEW’ that corre-

sponded to the right/left button mapping. On each trial, participants were asked to determine

whether the object on the screen was old, meaning they remembered rating that object on their first

visit or if the object was new, meaning they did not remember seeing or rating that object. Partici-

pants responded by pressing one of two buttons on an MRI-compatible button box. Old/New

response-button mapping was counterbalanced across participants. The stimulus remained on the

screen for a maximum of 3 s. If participants responded within the 3 s response window, their choice

(i.e. OLD or NEW) was highlighted for 500 ms. If they did not respond within the 3 s window, a mes-

sage asking them to please respond faster was displayed for 500 ms. Trials were separated by a jit-

tered ITI generated using the same procedure as for the other two tasks and resulted in a

distribution mean across trials of 3.0 s with an sd = 1.98 s. The 200 trials were split into four scan

runs of 50 trials (approximately 5 min) each. All four runs of this task were consecutive, with no other

intervening tasks in between.

Experiment 2
The patients and age-matched healthy participants performed a version of the scan study that did

not include the memory recognition task and was performed outside of the scanner. The study was

conducted over two days; on one day participants took part in the value-based decision task and on

the other day they took part in the perceptual decision task. The order in which tasks were per-

formed was counterbalanced across participants. The value-based decision task differed from the

task in Experiment 1 in four ways. (1) The food stimuli used were different and consisted of a wider

range of non-packaged foods, not just snack foods. (2) Rather than a BDM auction, participants indi-

cated their pre-experimental preferences for 30 food items using a preference rating scale. Partici-

pants were instructed to rate how much they prefer to eat the food item on the screen from 0
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(prefer least to eat) to 10 (prefer most to eat). Participants were asked to name the food item on the

screen before rating it. Foods that a participant did not recognize or misnamed were excluded from

analysis. This ensured that only familiar foods were included in the analysis. Ratings were z-scored

within participant and DValue was calculated from the z-scored ratings for 210 unique pairs of items,

none of which repeated during the food choice task. (3) Participants were given 3.5 s rather than 2.5

s to make a choice. (4) Participants were not asked to fast before the experiment and did not receive

a snack at the end of the experiment based on their choice on a randomly selected trial. The percep-

tual decision task differed from the task in Experiment 1 in three ways: (1) participants received only

40 practice trials, (2) participants continued to receive correct/incorrect feedback throughout the

entire task, and (3) participants were given 3.5 s to make a choice. Prior to the perceptual task, par-

ticipants were trained on selecting blue or yellow using the proper button on the keyboard to ensure

that they learned the color-button mapping prior to starting the perceptual decision task. Partici-

pants were trained for only 40 trials rather than to criterion and continued to receive correct/incor-

rect feedback for all trials.

fMRI acquisition
Imaging data were acquired on a 3 T GE MR750 MRI scanner with a 32-channel head coil. Functional

data were acquired using a T2*-weighted echo planar imaging sequence (repetition time (TR) = 2 s,

echo time (TE) = 22 ms, flip angle (FA) = 70˚, field of view (FOV) = 192 mm, acquisition matrix of 96

� 96). Forty oblique axial slices were acquired with a 2 mm in-plane resolution positioned along the

anterior commissure-posterior commissure line and spaced 3 mm to achieve full brain coverage. Sli-

ces were acquired in an interleaved fashion. Each of the food choice runs consisted of 212 volumes,

each of the color dots runs consisted of 197 volumes, and the memory test runs consisted of 150 vol-

umes. In addition to functional data, a single three-dimensional high-resolution (1 mm isotropic) T1-

weighted full-brain image was acquired using a BRAVO pulse sequence for brain masking and image

registration.

Behavioral analysis
Choice and reaction time data
Choice and RT data were analyzed using regression models. Choice data were scored on accuracy

(correct choice in the perceptual decision task or consistency of responses with the stated value for

the choice option—WTP for the scan study and preference rating for patient study—that is score

one for trials when the participant chose the food with higher WTP/rating and 0 if they chose the

food with lower WTP/rating). These binary data were then entered into a repeated measures logistic

regression mixed effects model to calculate the odds of choosing correctly/consistently with their

prior valuation and test the relationship between choices and task difficulty (color coherence or

DValue). DValue for the scan study was calculated by subtracting the WTP for the item on the left

side of the screen from the WTP for the item on the right side of the screen. DValue for the patient

study was calculated by subtracting the z-scored rating (z-scored within participant) for the item on

the left from the z-scored rating of the item on the right. RT data were entered into a mixed effects

repeated measures linear regression model to test the relationship between RT and |color coher-

ence| or |DValue|. For the patient study, we also entered group assignment as a predictor in the

models and its interaction with DValue separately for each task. For the patient study, we also ran a

full model combining across both tasks to assess the three-way interaction between group (patient

or healthy), task type (perceptual or value-based), and difficulty on choices or RT.

Drift diffusion model
We fit a one-dimensional drift diffusion model to the choice and RT on each decision. The model

assumes that choice and RT are linked by a common mechanism of evidence accumulation, which

stops when a decision variable reaches one of two bounds. The decision variable (x) is given by the

cumulative sum of samples from a Normal distribution with mean �dt and variance dt,

dx¼ �dtþNð0;dtÞ (1)

where N represents an independent sample from a Normal distribution with mean 0 and variance

dt, that is, the increment of a Wiener process. The accumulation starts with x = 0.
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In the value-based decision, the mean of the momentary evidence (also termed the drift rate) is

given by

�¼ ks VR�VLj jpþ�0 (2)

where VR and VL are the values of the right and left item respectively, k is a fitted constant, s is the

sign of the value difference (positive if VR>VL, negative otherwise), p is a fitted exponent and �
0

implements a bias to the drift rate to account for non-symmetric distributions of choice or RT

between left and right choices. If p¼ 1, then ks would yield a drift rate that varies linearly as a func-

tion of DValue. The power law instantiates the possibility that the monotonic relationship between

DValue and drift rate is not necessarily linear. k, p, and �0 are fitted parameters.

In the color-discrimination task, the mean of the momentary evidence is given by

�¼ ks Cj jpþ�0 (3)

where C is the color coherence, and s is positive if C>0 and negative otherwise. There is reason to

expect p»1 for the color-discrimination task, but we allowed this degree of freedom (for parity).

We used time-varying decision bounds to account for potential differences in RT between correct

and error trials. This is the normative implementation of bounded drift diffusion when there are mul-

tiple difficulty levels (Drugowitsch et al., 2012). The shape of the bound was determined by three

parameters. The initial bound height, B0, remains constant for 0 � t < Bdel, and then collapses expo-

nentially towards zero with time constant B2 (in seconds). The two bounds were assumed to be sym-

metrical around x ¼ 0. For the value-based task, the positive bound represents a commitment to a

right-item choice, and the negative bound represents a commitment to a left item choice. For the

perceptual task, the positive and negative bounds indicate a commitment to the blue and yellow

choices, respectively. The RT is given by the sum of the decision time, determined by the drift-diffu-

sion process, and a non-decision time that we assume Gaussian with mean tnd and standard devia-

tion stnd.

We performed separate fits for perceptual- and value-based tasks. The model was fit to maximize

the joint likelihood of choice and RT of each trial. The likelihood of the parameters given the data

from each trial was obtained by numerically solving the Fokker-Planck (FP) equation describing the

dynamics of the drift-diffusion process. We used fast convolution methods to find the numerical solu-

tion to the FP equation. The parameter optimization was performed using the Nelder-Mead Simplex

Method (Lagarias et al., 1998) to minimize the negative log-likelihood of the parameters given the

choice and RT data. All parameters were bounded during the fitting procedure. We took the best fit

parameters from one hundred fits using random starting points to ensure that the optimization

search did not get stuck in a local minimum. For the value-based task, we reduced the number of

unique drift-rates by rounding DValue to multiples of 0.1 dollars. In Figure 2 and Figure 5, we fit the

models to grouped data from all participants after binning DValue into 11 levels. These 11 levels had

fixed boundaries on DValue and were assigned the mean DValue of the points composing the bin.

This binning was intended to match the levels of DValue to the discrete levels of color coherence.

The fits for individual participants were performed on all trials (not binned) and are shown in Fig-

ure 2—figure supplement 1 and Figure 5—figure supplement 4. The best fitting parameters for

the grouped and non-grouped data are displayed in Figure 2—source data 1 and Figure 5—source

data 1.

Heuristic model
We evaluated an alternative to drift-diffusion models, which obeys the following heuristic. Suppose

that a subset of food items are valued as either highly desirable (Dþ) or highly undesirable (D�). All

the other items are designated middling (D » ). This yields three types of decisions: (i) Decisions

between an item from Dþ and an item from the other categories (D� or D » ) are fast choices of the

preferred item regardless of DValue. (ii) Decisions between an item from D� and an item from D »

are fast choices of item from D » regardless of DValue. (iii) Decisions between two items from the

same class (both from Dþ, both from D�, or both from D » ) are slow, regardless of DValue and they

are stochastic. We allowed these stochastic choices to be governed by a logistic function of DValue,

although it could be argued that they ought to be random. We refer to i and ii as trivial decisions

and to iii as non-trivial decisions. The only role of DValue is to determine the choice probabilities for
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the non-trivial decisions. Importantly, it is uncoupled to the RT, which is uniformly slow for this

category.

We implemented this model using the following degrees of freedom: k1 and k2 are criteria that

separate the ranges of value corresponding to D�, D » and Dþ; two means and two standard devia-

tions for the fast and slow RTs; and two degrees of freedom (b0, b1) for the logistic regression relat-

ing the non-trivial choices to DValue. The model was fit to maximize the joint likelihood of choice

and RT of each trial. We used the Nelder-Mead Simplex Method (Lagarias et al., 1998) to find the

model’s parameters that minimize the negative log-likelihood (NLL) of the choice and RT data. RTi
and RTii are assumed to be generated from a normal distribution with a mean �RTfast and a standard

deviation s2

RTfast. RTiii are assumed to be generated from �RTslow and a standard deviation s2

RTslow. The

NLL for non-trivial choices derive from a Bernoulli (binomial) distribution: �logðp choicej;b0;b1½ �Þ. The

NLL for trivial choices is not properly specified. The model posits a deterministic decision rule for

these trials, but the data exhibit stochasticity (see insets in Figure 5—figure supplement 2). To

avoid infinite penalization during fitting, we assigned the probability p ¼ 0:99 for trivial choices con-

sistent with the rule, and 1� p for the exceptions. For model comparison statistics (e.g. BIC), we

obtain p from the logistic function (derived from the non-trivial choices) evaluated at Max(|DValue|).

The arbitrary choice of penalty for inconsistent choices on trivial trials renders model comparison

ill-posed. The same can be said for the implementation of a logistic choice function to account for

the stochastic non-trivial choices. Nevertheless, we compared the heuristic model to the diffusion

models by comparing the deviance of the best fits (same as BIC because the number of degrees of

freedom are equal). We also implemented a version of the model that employs a ‘trembling hand’

error for penalizing an incorrect choice on a trivial trial by allowing the probability p for trivial choices

to be a free parameter. We find that the DDM model still performs better than this more permissive

parametrization of the heuristic model (BIC = 425.88).

The unsatisfactory aspects of this model comparison exercise led us to pursue a more qualitative

strategy. The heuristic model posits independence of RT and DValue once grouped by trivial or non-

trivial, whereas sequential sampling models (e.g. diffusion) predict a dependence regardless of this

grouping. We evaluated this prediction by examining the effect of |DValue| on RT, using mixed

effects linear regression on combined data from the participants in the three experimental groups:

imaging, amnesic patients and their age-matched controls. For the heuristic model, the designation

of trivial vs. non-trivial was established from fits to each participant’s data (i.e., k1 and k2). The analy-

sis is shown in Figure 5—figure supplement 2.

Imaging analysis
Imaging data preprocessing
Raw imaging data in DICOM format were converted to NIFTI format and preprocessed through a

standard preprocessing pipeline using the FSL package version 5 (Smith et al., 2004). Functional

image time series were first aligned using the MCFLIRT tool to obtain six motion parameters that

correspond to the x, y, z translation and rotation of the brain over time. Next, the skull was removed

from the T2* images using the brain extraction tool (BET) and from the high-resolution T1 images

using Freesurfer (Fischl et al., 1999; Ségonne et al., 2004). Spatial smoothing was performed using

a Gaussian kernel with a full-width half maximum (FWHM) of 5 mm. Data and design matrix were

high-pass filtered using a Gaussian-weighted least-squares straight line fit with a cutoff period of

100 s. Grand-mean intensity normalization of each run’s entire four-dimensional data set by a single

multiplicative factor was performed. The functional volumes for each participant and run were regis-

tered to the high resolution T1-weighted structural volume using a boundary-based registration

method implemented in FSL5 (BBR, Greve and Fischl, 2009). The T1-weighted image was then reg-

istered to the MNI152 2 mm template using a linear registration implemented in FLIRT (12 degrees

of freedom). These two registration steps were concatenated to obtain a functional-to-standard

space registration matrix.

Food choice
We conducted a generalized linear model (GLM) analysis on the food choice task data. The first anal-

ysis included three regressors of interest: (i) onsets for all valid choice trials; (ii) same onsets and

duration as (i) but modulated by RT; (iii) onsets for missed trials. After running this model, we ran a
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conjunction analysis using the output of this model and the equivalent model on the perceptual deci-

sion task data (see below) with our main memory retrieval success contrast (see memory recognition

section below). The conjunction map is presented in Figure 3. This model was also used to generate

the map in Figure 3—figure supplement 2A.

The second GLM analysis was designed to rule out the possibility that differences in RT range

between the two tasks might account for a contrast between tasks in the effect of RT on BOLD. This

model included five regressors of interest: (i) onsets for all valid choice trials with RT in the range of

overlap across the two tasks; (ii) same onsets and duration as (i) but modulated by RT; (iii) onsets for

all valid choice trials with RT not in the range of overlap across the two tasks; (iv) onsets for missed

trials. This model was used to generate the map in Figure 3—figure supplement 2B.

The third GLM model is the model we based our inferences on and included twelve regressors of

interest: (i) onsets for non-repeated unique pair ‘correct’ trials (i.e. unique pairs of items that were

only presented once where choice was consistent with initial valuation during the auction meaning

the chosen item had the higher WTP), modeled with a duration that equaled the average RT across

all valid food choice trials and participants; (ii) same onsets and duration as (i) but modulated by |D

Value| demeaned across these trials within each run for each participant; (iii) same onsets and dura-

tion as (i) but modulated by RT demeaned across these trials within each run for each participant;

(iv-vi) similar to regressors (i-iii), but for non-repeated unique pair ‘incorrect’ trials (i.e. unique pairs

of items that were only presented once for which choice was inconsistent with initial valuation during

the auction, meaning the chosen item had the lower WTP); (vii-ix) similar to regressors (i-iii), but for

repeated unique pair trials (i.e. unique pairs of items that were presented twice, both ‘correct’ and

‘incorrect’ trials together); (x) to account for any differences in mean value across items in a pair (i.e.

average WTP across both items in a pair) between trial types, we added a regressor with the onsets

of all valid trials and the same duration as all other regressors, while the modulator was the

demeaned average WTP across both items in a pair; (xi) to account for any differences in right/left

choices between trial types, we added a regressor with the same onsets and durations as (x), while

the modulator was an indicator for right/left response; (xii) onsets for missed trials. Maps from this

model are presented in Figure 3—figure supplement 3.

In all models, we also included the six x, y, z translation and rotation motion parameters obtained

from MCFLIRT, framewise displacement (FD) and RMS intensity difference from one volume to the

next (Power et al., 2012) as confound regressors. We also modeled out volumes with FD and

DVARS that exceeded a threshold of 0.5 by adding a single time point regressor for each ‘to-be-

scrubbed’ volume (Siegel et al., 2014). All regressors were entered at the first level of analysis and

all (but the added confound regressors) were convolved with a canonical double-gamma hemody-

namic response function. The temporal derivative of each regressor (except for the added confound

regressors) was included in the model. The models were estimated separately for each participant

and each run.

Color dots
The first GLM analysis included three regressors of interest: (i) onsets for all valid choice trials; (ii)

same onsets and duration as (i) but modulated by RT; (iii) onsets for missed trials. After running this

model, we ran a conjunction analysis using the output of this model and the equivalent model on

the value-based decision task data (see above) with our main memory retrieval success contrast (see

memory recognition section below). The conjunction map is presented in Figure 3. This model was

also used to generate the map in Figure 3—figure supplement 2A.

The second GLM analysis evaluates the possibility that differences in RT variance between the

two tasks might account for a contrast between tasks in the effect of RT on BOLD. This model

included five regressors of interest: (i) onsets for all valid choice trials with RT in the range of overlap

across the two tasks; (ii) same onsets and duration as (i) but modulated by RT; (iii) onsets for all valid

choice trials with RT not in the range of overlap across the two tasks; (iv) onsets for missed trials.

This model was used to generate the map in Figure 3—figure supplement 2B.

The third GLM model for the color dots task is the model that we based our inferences on and

included three regressors for each of correct and incorrect color choice trial types: (i) onsets of cor-

rect trials (i.e. participant chose yellow when the coherence was negative and chose blue when the

coherence was positive, as well as all coherence 0 trials) modeled with a duration which equaled the
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average RT across all valid color dots trials and participants; (ii) same onsets and durations as (i) but

modulated by |color coherence| demeaned across these trials within each run for each participant;

(iii) same onsets and durations as (i) but modulated by RT demeaned across these trials within each

run for each participant; (iv-vi) similar to regressors (i-iii), but for incorrect trials (i.e. participant chose

yellow when the coherence was positive and chose blue when the coherence was negative). Addi-

tionally, we included two other regressors: to account for any differences in right/left choices

between trial types we added a regressor (vii) with the onsets of all valid color dots trials and the

same duration as all other regressors (average RT across all trials and participants), while the mod-

ulator was an indicator for right/left response; finally, we included a regressor (viii) with onsets for

missed trials. Maps from this model are presented in Figure 3—figure supplement 3.

For all models, we added the same covariates as in the food choice design matrix, including the

six motion regressors described above, along with FD and DVARS as confound regressors.

Memory recognition
The GLM for the memory recognition task data included 8 regressors of interest: (i) onsets of hit tri-

als (i.e. participant responded old when the object on the screen was old), modeled with a duration

that equaled the average RT across all valid memory trials and participants; (ii) same onset and dura-

tion as (i) but modulated by liking rating for the object demeaned across these trials within each run

for each participant; (iii) onsets of miss trials (i.e. participant responded new when the object on the

screen was old) modeled with the same duration as (i); (iv) same onset and duration as (iii) but modu-

lated by liking rating for the object demeaned across these trials within each run for each partici-

pant; (v) onsets of correct rejection trials (i.e. participant responded new when the object on the

screen was new) modeled with the same duration as (i); (vi) onsets of false alarm trials (i.e. participant

responded old when the object on the screen was new) modeled with the same duration as (i); (vii)

to account for any differences in RT between trial types we added a regressor with the onsets of all

valid trials and the same duration as all other regressors (average RT across all trials and participants)

while the modulator was the demeaned RT across all valid trials; (viii) onsets for missed trials. We

added the same covariates as in the food choice design matrix, including the six motion regressors

described above, along with FD and DVARS as confound regressors. The map for the contrast

hits >correct rejections in this model is presented in Figure 3—figure supplement 1. This contrast

was also used in the conjunction analysis presented in Figure 3.

Conjunction analysis
To test the spatial overlap in memory-retrieval-related brain activity and value-based-RT-related acti-

vation, we conducted a conjunction analysis between the maps presented in Figure 3—figure sup-

plement 1 (memory retrieval success contrast of hits [regressor (i) in memory recognition fMRI GLM

model] greater than correct rejections [regressor (v) in memory recognition fMRI GLM model]) and

the same map as in Figure 3—figure supplement 3C, but for the simpler model (contrast of value-

based RT [regressor (iii) in the first food choice fMRI GLM model] greater than perceptual RT [regres-

sor (iii) in the first color dots fMRI GLM model]). The conjunction map is presented in Figure 3.

Psychophysiological interaction (PPI)
As the seed for the PPI analysis, we used significant voxels for the contrast value-based RT greater

than perceptual RT (Figure 3—figure supplement 3C) that lay within an anatomical mask of bilateral

hippocampus (Harvard-Oxford Atlas). The PPI regressor was created by deconvolving the seed to

obtain an estimated neural signal during value-based decisions using SPM’s deconvolution algorithm

(Gitelman et al., 2003), calculating the interaction with the task in the neural domain and then

reconvolving to create the final regressor. We followed McLaren et al.’s (McLaren et al., 2012) gPPI

modeling procedure and included nine regressors in our GLM: (i) onsets of all valid food choice tri-

als, modeled with a duration that equaled the average RT across all valid trials and participants; (ii)

onsets of all valid trials, modeled with the same duration as in i and modulated by RT, demeaned

across these trials within each run for each participant; (iii) onsets of all valid trials, modeled with the

same duration as in i and modulated by |DValue|, demeaned across these trials within each run for

each participant; (iv) same onsets and duration as i but modulated by the value of the chosen food,

demeaned across these trials within each run for each participant; (v) to account for any differences
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in right/left choices, we added a regressor with the same onsets and duration as i but modulated by

an indicator for right/left response; (vi) onsets of all missed trials with the same duration as i; (vii) the

raw time course extracted from the seed (after registering the seed to the native space of each run

for each participant); (viii) a PPI regressor with the same onsets as i. The PPI that varied linearly with

RT during food choice trials generated the map in Figure 4.

GLM model estimation and correction for multiple comparisons
All GLM models were estimated using FSL’s FEAT. The first-level time-series GLM analysis was per-

formed for each run per participant using FSL’s FILM. The first-level contrast images were then com-

bined across runs per participant using fixed effects. The group-level analysis was performed using

FSL’s mixed effects modeling tool FLAME1 (Beckmann et al., 2003). Group-level maps were cor-

rected to control the familywise error rate in one of two ways: for whole-brain correction, we used

cluster-based Gaussian random field correction for multiple comparisons, with an uncorrected clus-

ter-forming threshold of z = 2.3 and corrected extent threshold of p<0.05. For small volume correc-

tion, we used a voxel-based Gaussian random field theory-based maximum height thresholding with

a voxel-level corrected threshold of p<0.05 within a 3D mask of a region of interest.

Data and software availability
Data from this study are available from the corresponding author upon request. Task code and anal-

ysis code is available at https://github.com/abakkour/MDMRT_scan (Bakkour, 2019; copy archived

at https://github.com/elifesciences-publications/MDMRT_scan/settings). Imaging analysis code is

available from the corresponding author upon request.
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Newsome WT, Paré EB. 1988. A selective impairment of motion perception following lesions of the middle
temporal visual area (MT). The Journal of Neuroscience 8:2201–2211. DOI: https://doi.org/10.1523/
JNEUROSCI.08-06-02201.1988, PMID: 3385495

Olsen RK, Sebanayagam V, Lee Y, Moscovitch M, Grady CL, Rosenbaum RS, Ryan JD. 2016. The relationship
between eye movements and subsequent recognition: evidence from individual differences and amnesia.
Cortex 85:182–193. DOI: https://doi.org/10.1016/j.cortex.2016.10.007, PMID: 27842701

Padoa-Schioppa C, Assad JA. 2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441:
223–226. DOI: https://doi.org/10.1038/nature04676, PMID: 16633341

Palombo DJ, Keane MM, Verfaellie M. 2015a. How does the Hippocampus shape decisions? Neurobiology of
Learning and Memory 125:93–97. DOI: https://doi.org/10.1016/j.nlm.2015.08.005, PMID: 26297967

Palombo DJ, Keane MM, Verfaellie M. 2015b. The medial temporal lobes are critical for reward-based decision
making under conditions that promote episodic future thinking. Hippocampus 25:345–353. DOI: https://doi.
org/10.1002/hipo.22376, PMID: 25284804

Palombo DJ, Di Lascio JM, Howard MW, Verfaellie M. 2019. Medial temporal lobe amnesia is associated with a
deficit in recovering temporal context. Journal of Cognitive Neuroscience 31:236–248. DOI: https://doi.org/10.
1162/jocn_a_01344, PMID: 30240314

Pelletier G, Fellows LK. 2019. A critical role for human ventromedial frontal lobe in value comparison of complex
objects based on attribute configuration. The Journal of Neuroscience 39:4124–4132. DOI: https://doi.org/10.
1523/JNEUROSCI.2969-18.2019, PMID: 30867258

Plassmann H, O’Doherty J, Rangel A. 2007. Orbitofrontal cortex encodes willingness to pay in everyday
economic transactions. Journal of Neuroscience 27:9984–9988. DOI: https://doi.org/10.1523/JNEUROSCI.
2131-07.2007, PMID: 17855612

Platt ML, Plassmann H. 2014. Multistage valuation signals and common neural currencies. In: Glimcher P. W,
Fehr E (Eds). Neuroeconomics. Academic Press. p. 237–258.

Polanı́a R, Moisa M, Opitz A, Grueschow M, Ruff CC. 2015. The precision of value-based choices depends
causally on fronto-parietal phase coupling. Nature Communications 6:8090. DOI: https://doi.org/10.1038/
ncomms9090, PMID: 26290482

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. 2012. Spurious but systematic correlations in
functional connectivity MRI networks arise from subject motion. NeuroImage 59:2142–2154. DOI: https://doi.
org/10.1016/j.neuroimage.2011.10.018, PMID: 22019881

Race E, Keane MM, Verfaellie M. 2011. Medial temporal lobe damage causes deficits in episodic memory and
episodic future thinking not attributable to deficits in narrative construction. Journal of Neuroscience 31:
10262–10269. DOI: https://doi.org/10.1523/JNEUROSCI.1145-11.2011, PMID: 21753003

Rangel A, Camerer C, Montague PR. 2008. A framework for studying the neurobiology of value-based decision
making. Nature Reviews Neuroscience 9:545–556. DOI: https://doi.org/10.1038/nrn2357, PMID: 18545266

Rangel A, Clithero JA. 2014. The computation of stimulus values in simple choice. In: Glimcher P. W, Fehr E
(Eds). Neuroeconomics. Academic Press. p. 125–148.

Ratcliff R. 2002. A diffusion model account of response time and accuracy in a brightness discrimination task:
fitting real data and failing to fit fake but plausible data. Psychonomic Bulletin & Review 9:278–291.
DOI: https://doi.org/10.3758/BF03196283, PMID: 12120790

Ratcliff R, McKoon G. 2008. The diffusion decision model: theory and data for two-choice decision tasks. Neural
Computation 20:873–922. DOI: https://doi.org/10.1162/neco.2008.12-06-420, PMID: 18085991

Reynolds JN, Hyland BI, Wickens JR. 2001. A cellular mechanism of reward-related learning. Nature 413:67–70.
DOI: https://doi.org/10.1038/35092560, PMID: 11544526

Rudebeck PH, Behrens TE, Kennerley SW, Baxter MG, Buckley MJ, Walton ME, Rushworth MF. 2008. Frontal
cortex subregions play distinct roles in choices between actions and stimuli. Journal of Neuroscience 28:13775–
13785. DOI: https://doi.org/10.1523/JNEUROSCI.3541-08.2008, PMID: 19091968

Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE. 2011. Frontal cortex and reward-guided
learning and decision-making. Neuron 70:1054–1069. DOI: https://doi.org/10.1016/j.neuron.2011.05.014,
PMID: 21689594

Ryan JD, Althoff RR, Whitlow S, Cohen NJ. 2000. Amnesia is a deficit in relational memory. Psychological Science
11:454–461. DOI: https://doi.org/10.1111/1467-9280.00288, PMID: 11202489

Bakkour et al. eLife 2019;8:e46080. DOI: https://doi.org/10.7554/eLife.46080 26 of 28

Research article Neuroscience

https://doi.org/10.1093/cercor/bhg097
http://www.ncbi.nlm.nih.gov/pubmed/14576217
https://doi.org/10.1016/j.neuroscience.2017.07.066
http://www.ncbi.nlm.nih.gov/pubmed/28827088
https://doi.org/10.1016/j.neuroimage.2012.03.068
https://doi.org/10.1016/j.neuroimage.2012.03.068
http://www.ncbi.nlm.nih.gov/pubmed/22484411
https://doi.org/10.2139/ssrn.1901533
https://doi.org/10.1073/pnas.1410767112
http://www.ncbi.nlm.nih.gov/pubmed/25947150
https://doi.org/10.1523/JNEUROSCI.08-06-02201.1988
https://doi.org/10.1523/JNEUROSCI.08-06-02201.1988
http://www.ncbi.nlm.nih.gov/pubmed/3385495
https://doi.org/10.1016/j.cortex.2016.10.007
http://www.ncbi.nlm.nih.gov/pubmed/27842701
https://doi.org/10.1038/nature04676
http://www.ncbi.nlm.nih.gov/pubmed/16633341
https://doi.org/10.1016/j.nlm.2015.08.005
http://www.ncbi.nlm.nih.gov/pubmed/26297967
https://doi.org/10.1002/hipo.22376
https://doi.org/10.1002/hipo.22376
http://www.ncbi.nlm.nih.gov/pubmed/25284804
https://doi.org/10.1162/jocn_a_01344
https://doi.org/10.1162/jocn_a_01344
http://www.ncbi.nlm.nih.gov/pubmed/30240314
https://doi.org/10.1523/JNEUROSCI.2969-18.2019
https://doi.org/10.1523/JNEUROSCI.2969-18.2019
http://www.ncbi.nlm.nih.gov/pubmed/30867258
https://doi.org/10.1523/JNEUROSCI.2131-07.2007
https://doi.org/10.1523/JNEUROSCI.2131-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17855612
https://doi.org/10.1038/ncomms9090
https://doi.org/10.1038/ncomms9090
http://www.ncbi.nlm.nih.gov/pubmed/26290482
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuroimage.2011.10.018
http://www.ncbi.nlm.nih.gov/pubmed/22019881
https://doi.org/10.1523/JNEUROSCI.1145-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21753003
https://doi.org/10.1038/nrn2357
http://www.ncbi.nlm.nih.gov/pubmed/18545266
https://doi.org/10.3758/BF03196283
http://www.ncbi.nlm.nih.gov/pubmed/12120790
https://doi.org/10.1162/neco.2008.12-06-420
http://www.ncbi.nlm.nih.gov/pubmed/18085991
https://doi.org/10.1038/35092560
http://www.ncbi.nlm.nih.gov/pubmed/11544526
https://doi.org/10.1523/JNEUROSCI.3541-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19091968
https://doi.org/10.1016/j.neuron.2011.05.014
http://www.ncbi.nlm.nih.gov/pubmed/21689594
https://doi.org/10.1111/1467-9280.00288
http://www.ncbi.nlm.nih.gov/pubmed/11202489
https://doi.org/10.7554/eLife.46080


Saez RA, Saez A, Paton JJ, Lau B, Salzman CD. 2017. Distinct roles for the amygdala and orbitofrontal cortex in
representing the relative amount of expected reward. Neuron 95:70–77. DOI: https://doi.org/10.1016/j.neuron.
2017.06.012, PMID: 28683271

Salzman CD, Britten KH, Newsome WT. 1990. Cortical microstimulation influences perceptual judgements of
motion direction. Nature 346:174–177. DOI: https://doi.org/10.1038/346174a0, PMID: 2366872

Schacter DL, Addis DR, Buckner RL. 2007. Remembering the past to imagine the future: the prospective brain.
Nature Reviews Neuroscience 8:657–661. DOI: https://doi.org/10.1038/nrn2213, PMID: 17700624

Schapiro AC, Gregory E, Landau B, McCloskey M, Turk-Browne NB. 2014. The necessity of the medial temporal
lobe for statistical learning. Journal of Cognitive Neuroscience 26:1736–1747. DOI: https://doi.org/10.1162/
jocn_a_00578, PMID: 24456393

Schultz W, Dayan P, Montague PR. 1997. A neural substrate of prediction and reward. Science 275:1593–1599.
DOI: https://doi.org/10.1126/science.275.5306.1593, PMID: 9054347

Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B. 2004. A hybrid approach to the skull
stripping problem in MRI. NeuroImage 22:1060–1075. DOI: https://doi.org/10.1016/j.neuroimage.2004.03.032

Shadlen MN, Kiani R. 2013. Decision making as a window on cognition. Neuron 80:791–806. DOI: https://doi.
org/10.1016/j.neuron.2013.10.047, PMID: 24183028

Shadlen MN, Newsome WT. 1998. The variable discharge of cortical neurons: implications for connectivity,
computation, and information coding. The Journal of Neuroscience 18:3870–3896. DOI: https://doi.org/10.
1523/JNEUROSCI.18-10-03870.1998, PMID: 9570816

Shadlen MN, Shohamy D. 2016. Decision making and sequential sampling from memory. Neuron 90:927–939.
DOI: https://doi.org/10.1016/j.neuron.2016.04.036, PMID: 27253447

Shohamy D, Turk-Browne NB. 2013. Mechanisms for widespread hippocampal involvement in cognition. Journal
of Experimental Psychology: General 142:1159–1170. DOI: https://doi.org/10.1037/a0034461, PMID: 24246058

Siegel JS, Power JD, Dubis JW, Vogel AC, Church JA, Schlaggar BL, Petersen SE. 2014. Statistical improvements
in functional magnetic resonance imaging analyses produced by censoring high-motion data points. Human
Brain Mapping 35:1981–1996. DOI: https://doi.org/10.1002/hbm.22307, PMID: 23861343

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M,
Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM. 2004.
Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 Suppl 1:
S208–S219. DOI: https://doi.org/10.1016/j.neuroimage.2004.07.051, PMID: 15501092

Sokol-Hessner P, Hutcherson C, Hare T, Rangel A. 2012. Decision value computation in DLPFC and VMPFC
adjusts to the available decision time. European Journal of Neuroscience 35:1065–1074. DOI: https://doi.org/
10.1111/j.1460-9568.2012.08076.x, PMID: 22487036

Sorensen R. 2004. Paradoxes of Rationality. In: Mele A. R, Rawling P (Eds). The Oxford Handbook of Rationality.
Oxford University Press. p. 257–275.

Stark CE, Squire LR. 2001. Simple and associative recognition memory in the hippocampal region. Learning &
Memory 8:190–197. DOI: https://doi.org/10.1101/lm.40701, PMID: 11533222

Tversky A. 1972. Elimination by aspects: a theory of choice. Psychological Review 79:281–299. DOI: https://doi.
org/10.1037/h0032955

Tversky A, Kahneman D. 1986. Rational choice and the framing of decisions. The Journal of Business 59:S251–
S278. DOI: https://doi.org/10.1086/296365

Usher M, McClelland JL. 2001. The time course of perceptual choice: the leaky, competing accumulator model.
Psychological Review 108:550–592. DOI: https://doi.org/10.1037/0033-295X.108.3.550, PMID: 11488378

Vo K, Rutledge RB, Chatterjee A, Kable JW. 2014. Dorsal striatum is necessary for stimulus-value but not action-
value learning in humans. Brain 137:3129–3135. DOI: https://doi.org/10.1093/brain/awu277, PMID: 25273995

Voigt K, Murawski C, Bode S. 2017. Endogenous formation of preferences: choices systematically change
willingness-to-pay for goods. Journal of Experimental Psychology: Learning, Memory, and Cognition 43:1872–
1882. DOI: https://doi.org/10.1037/xlm0000415, PMID: 28504526

Wechsler D. 1997a. Wechsler Adult Intelligence Scale. In: Administration and Scoring Manual. Third Edition
(WAIS-III). San Antonio, TX: Psychological Corporation.

Wechsler D. 1997b. Wechsler Memory Scale. In: Administration and Scoring Manual. Third edition (WMS-III). San
Antonio, TX: Psychological Corporation.
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Appendix 1
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Experiment 1 Behavioral Results

Value-based Decisions
Participants tended to choose the item that was of higher value (as measured by willingness-

to-pay in the auction phase), and this tendency increased as the value difference between the

two items (i.e. DValue) increased (Figure 2B, top. The odds of right item choices multiplied for

every $1 increase in DValue by 5.9, 95% CI = [5.08 6.93], p<0.0001). Participants’ RTs

increased as |DValue| decreased (Figure 2B, bottom; b = �0.11, bootstrapped 95% CI [�0.13–

0.09], bootstrapped p=0.001). These results replicate previous findings that show that choices

and RTs vary systematically with DValue (Krajbich et al., 2010; Milosavljevic et al., 2010).

These relationships are captured by the drift diffusion model (solid black lines in Figure 2),

suggesting that the mechanism underlying the decision is based on accumulation of evidence.

Perceptual Decisions
When performing the color task, participants responded blue more often as the color

coherence increased and responded yellow more often as the color coherence decreased

(became more negative, Figure 2A, top. The odds of choosing blue multiplied for every unit

increase of color coherence by 68.05, 95% CI [52.63 87.99], p<0.0001). RTs were shortest at

the lowest and highest color coherence levels. RTs were longest at color coherence level zero,

when there was an equal proportion of yellow and blue dots in the stimulus (Figure 2A,

bottom). In a repeated measures linear regression mixed effects model, |color coherence| was

negatively related to RT (b = �0.25, bootstrapped 95% CI [�0.26–0.24], bootstrapped

p=0.001).

Memory recognition
Participants’ mean hit rate was 0.81 ± 0.15, and their mean correct rejection (CR) rate was

0.76 ± 0.15. Mean d’ across all participants was 1.78 ± 0.57. Participants were faster when

making a correct response (hits and CRs combined, mean RT = 1.24 ± 0.17) than when making

an incorrect response (misses and false alarms combined, mean RT = 1.42 ± 0.24, mean of the

differences in RT = 0.18, 95% CI [0.13 0.23], t(29) = 7.07, p<0.0001). The liking ratings for

objects on session one were related to responses and RTs during the memory recognition test

on session 2. In a repeated measures logistic regression mixed effects model including only

data for old objects seen on session 1, the odds of responding old multiplied for every unit

increase in liking rating by 1.12 (95% CI [1.03 1.22], p=0.011). In a repeated measures linear

regression mixed effects model, liking rating was weakly negatively related to RT (b = �0.006,

95% CI [�0.011–0.000], p=0.045).
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