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SUMMARY

Decisions are often associated with a degree of cer-
tainty, or confidence—an estimate of the probability
that the chosen option will be correct. Recent neuro-
physiological results suggest that the central pro-
cessing of evidence leading to a perceptual decision
also establishes a level of confidence. Here we pro-
vide a causal test of this hypothesis by electrically
stimulating areas of the visual cortex involved in
motion perception. Monkeys discriminated the
direction of motion in a noisy display andwere some-
times allowed to opt out of the direction choice if their
confidence was low. Microstimulation did not reduce
overall confidence in the decision but instead altered
confidence in a manner that mimicked a change in
visual motion, plus a small increase in sensory noise.
The results suggest that the same sensory neural sig-
nals support choice, reaction time, and confidence in
a decision and that artificial manipulation of these
signals preserves the quantitative relationship be-
tween accumulated evidence and confidence.

INTRODUCTION

Decision making refers to the process of deliberating toward a

commitment to a proposition, hypothesis, or plan of action.

Although decisions have a discrete, all or none character—

true or false, left or right, option D—they are also associated

with a degree of belief that the decision will turn out to be cor-

rect. This graded scale of choice certainty, or confidence,

affects the way we express our decisions (forcefully or reserv-

edly) and learn from our mistakes and successes. Confidence

is critically important when making interrelated decisions

without immediate feedback, or when reasoning about a

sequence of choices vicariously (Tolman, 1948). For these

and other reasons, psychologists have counted confidence

among the three main observables of choice behavior (Vickers,

1979), along with the outcome of the decision (correct or incor-

rect; i.e., accuracy) and the time needed to complete it (reac-

tion time [RT]).
The neural basis of assigning confidence in a decision is not

well understood, in part because it is difficult to study in animal

models. Recently, methods have been introduced that allow an-

imals to report their confidence, often in the form of a postdeci-

sion wager (PDW) (Foote and Crystal, 2007; Hampton, 2001;

Kepecs et al., 2008; Kiani and Shadlen, 2009; Middlebrooks

and Sommer, 2011; Smith et al., 2008). In one type of PDW,

animals indicate their degree of certainty by opting out of the

primary behavioral report when a decision is less likely to be

successful, instead choosing a guaranteed but smaller (or less

preferred) reward (Foote and Crystal, 2007; Hampton, 2001;

Kiani and Shadlen, 2009). Monkeys exercise this ‘‘sure-bet’’ op-

tion more frequently when the trial is difficult, and they are more

accurate when the sure bet is offered and waived versus when it

is not offered. This improvement holds within a particular level of

stimulus difficulty and even for identical replays of the same stim-

ulus (Kiani and Shadlen, 2009). It suggests that the decision to

accept the sure bet is based on an assessment of the reliability

of internal sensory evidence, rather than on a simple association

with trial difficulty or some property of the stimulus (Smith et al.,

2012).

A recent study (Kiani and Shadlen, 2009) reported the activity

of decision-related neurons in the lateral intraparietal area (LIP)

recorded while monkeys performed a direction discrimination

task with PDW. They found that these neurons—previously

shown to represent a decision variable (DV) that explains choice

and RT (Gold and Shadlen, 2007)—also reflect the degree of

confidence in the choice. The results raised the possibility of a

common neural mechanism underlying choice, RT, and confi-

dence. This hypothesis makes a clear prediction: if the repre-

sentation of accumulated evidence used to guide a perceptual

decision also supports a degree of confidence in that decision,

then a causal manipulation of the evidence will affect PDW in a

manner predictable from the effect on choices.

Here we test this hypothesis using electrical microstimulation

(mS). Previous studies showed that mS of direction-selective neu-

rons in the macaque visual cortex during a direction discrimina-

tion task causes monkeys to choose the preferred direction of

neurons near the electrode tip more often (Salzman et al.,

1990, 1992) and more rapidly (Ditterich et al., 2003). These ef-

fects on choice and RT can be quantified as an equivalent

change in the motion strength, as though the stimulation effec-

tively added to the visual evidence supporting the preferred

direction. Thus, a change in PDW commensurate with the shift
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Figure 1. Postdecision Wagering Reflects Confidence in the Motion

Decision

(A) Postdecision wagering (PDW) task sequence (see Experimental Pro-

cedures). Red spots indicate direction targets; blue spot is the ‘‘sure-bet’’

target (Ts). (B) Probability of choosing Ts as a function of viewing duration and

motion strength (color coded). Combined data from no-mS trials for two

monkeys (n = 26,924 trials). Solid traces are runningmeans (proportions) of the

data sorted by viewing duration. Dashed traces in all panels are fits to the

bounded accumulation model (see text and Figure 4). (C) Improvement in

decision accuracy on no-mS trials when the sure bet was offered but waived.

Solid traces are running means using all nonzero coherences and directions.

(D) Same format as (C) but broken down by motion strength (absolute value of

coherence) and pooled across viewing durations. Symbols indicate the

mean ± SE.
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of the choice function would support the idea that the same sen-

sory signals underlie both the choice and the confidence associ-

ated with it. On the other hand, since choice and confidence are

known to be dissociated in a variety of settings (Del Cul et al.,

2009; Drugowitsch et al., 2014; Kahneman et al., 1982; Komura

et al., 2013; Lau and Passingham, 2006; Rahnev et al., 2012;

Rounis et al., 2010), we might expect artificial stimulation to

induce a discrepancy between the two. Indeed, the effect of

mS on neuronal circuits is unlike anything elicited through natural

vision (Histed et al., 2009; Logothetis et al., 2010). Nonetheless,

here we show that mS affects confidence much like a change in

the visual stimulus, consistent with a common mechanism char-

acterized by bounded accumulation of evidence.

RESULTS

We trained two rhesus monkeys on a two-alternative direction

discrimination task with PDW (Figure 1A; Experimental Proce-

dures). The monkeys were required to decide between the direc-

tion preferred by neurons near the stimulating electrode and the

opposite ‘‘null’’ direction and to indicate this choice after a mem-

ory delay. Monkeys were rewarded for correct choices and

randomly on the neutral (0% coherence) stimulus. During the

memorydelay, themonkeywassometimesoffereda thirdalterna-

tive (the sure-bet target [Ts]) to opt out of the high-stakes direction

decision and receive a guaranteed but smaller reward. Monkeys
798 Neuron 83, 797–804, August 20, 2014 ª2014 Elsevier Inc.
choseTsmore frequently for shorter viewingdurationsandweaker

motion strengths (Figure 1B) and showed greater accuracy on

waived-Ts trials compared to when Ts was unavailable (Figures

1C and 1D). Figure 1C also reveals a saturation in performance

with longer viewing durations, suggesting a bounded accumula-

tion process (Kiani et al., 2008; Kiani and Shadlen, 2009).

On half of all trials, electrical mS (5–10 mA) was applied to area

MTorMST during the presentation of randomdotmotion. Impor-

tantly, the presence or absence of mS did not alter the designa-

tion of correct and incorrect trials. Thus, if microstimulation of

rightward preferring neurons were to cause the monkey to

answer ‘‘right’’ on a trial in which leftward motion was shown,

this would be regarded as an error, hence unrewarded.

Does Microstimulation Affect the Degree
of Confidence?
Since microstimulation induces an artificial pattern of activity in

the brain, we wondered whether monkeys would simply opt

out of the direction decision on mS trials when given this oppor-

tunity. The answer is resoundingly negative. As shown in Fig-

ure 2A, monkeys varied their propensity to choose Ts from

session to session, but such variation was highly correlated on

mS and no-mS trials (Pearson’s r = 0.88, p < 10�20). Averaged

within individual experiments, monkeys did not opt out more

frequently on mS trials; indeed, the trend favors a small decrease

in Ts choices (see Supplemental Experimental Procedures avail-

able online). The key point is that mS did not cause indiscriminate

uncertainty about perceptual judgments, or we would have

observed the opposite trend (more Ts choices on mS trials).

Although the average frequency of Ts choices was similar on

mS and no-mS trials, microstimulation nevertheless exerted a

substantial effect on confidence judgments, corresponding to

a shift of the bell-shaped function along the motion axis (Fig-

ure 2B, top). Notice that for both mS and no-mS trials, the monkey

accepted the sure bet most often for the stimulus conditions that

led to the most equivocal choice proportions (i.e., 0.5 preferred-

direction choices; Figure 2B, bottom). Across sessions, the shift

of the sure-bet function was highly correlated with the shift of the

choice function (Pearson’s r = 0.87, p < 10�18; Figure S1A). This

close association, despite the wide range of magnitudes of both

effects, is consistent with the idea that a common neural signal

underlies choice and confidence.

Another way to frame this result is to consider each motion di-

rection separately. For motion in the preferred direction (positive

coherence), monkeys chose the sure bet less often when mSwas

present (two-proportion z test, p < 10�18), suggesting that mS

increased confidence by reinforcing the evidence from the visual

stimulus. In contrast, for motion in the null direction (negative

coherence) monkeys chose the sure bet more often when mS

was present (p < 10�9), suggesting that mS decreased confi-

dence by contradicting the evidence for null-direction motion.

The end result is a leftward shift of the curve, as if mS had injected

a signal largely equivalent to a change in motion coherence.

Lastly, Figure 2B (top) clarifies the subtle decrease in the number

of Ts choices accompanying mS (noted above), which is most

evident at the peaks of the sure-bet functions. We will explain

this apparent increase in confidence using the model described

below.
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Figure 2. Effects of mS on PDW and Perceptual Decisions

(A) The proportion of trials in which the monkey opted out of the direction task

and chose the sure bet, comparing mS and no-mS trials (n = 63 sites). (B) Top:

proportion of sure-bet (Ts) choices as a function of motion strength (percent

coherence; positive = preferred direction of neurons at the stimulation site) for

all sessions in both monkeys (n = 53,134 trials). Red and blue data points

indicate mS and no-mS trials, respectively, combining across all viewing du-

rations. Error bars (SE) are smaller than the data points. Top, inset: proportion

Ts choices in separate control sessions, for trials with (red) and without (blue)

an offset added to the motion coherence in lieu of mS (‘‘Dcoh,’’ see text and

Figure S3). Bottom: proportion of preferred-direction choices as a function of

motion strength, plotted separately for the four conditions of the 23 2 design:

mS present (red) or absent (blue), and Ts offered but waived (solid curves and

filled symbols) or Ts not offered (dashed curves and open symbols). In both

panels, smooth curves represent fits to the bounded evidence-accumulation

model (see text), with the exception of the red solid and dashed curves in the

bottom panel. These are the predicted mS choice functions based on a fit to the

remaining observations. (C) Comparison of the effect of mS on choices (rep-

resented as an equivalent change in motion strength) on trials with and without

the Ts option.
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Microstimulation combined with PDW yields four choice

functions: ±mS when the sure bet was not offered and ±mS

when the monkey could have opted out but instead chose the

preferred or null direction of the stimulated neurons. These four

conditions are represented by the four curves in the bottom of

Figure 2B. There are three salient observations. First, mS shifted

the choice function by the same amount whether or not Ts was

available, and this similarity was apparent across the 63 sites

(Figure 2C; paired t test, p = 0.56). If on some trials mS had

affected confidence in a manner unlike a change in visual evi-

dence, its effect on choicesmight have been different depending

on whether the monkey had the chance to opt out of such trials.

The results did not support this possibility. Second, mS reduced

monkeys’ sensitivity to motion, consistent with previous studies

(Ditterich et al., 2003; Salzman et al., 1992). This is only apparent

as a subtle attenuation in the slope of the red curves compared

with their blue (no-mS) counterparts, but the effect is reliable

(17% ± 2% change, p < 10�16, logistic regression; Equation 2).
It suggests that mS occasionally weakened the directional signal

and/or added a small amount of noise to the decision process.

As shown below, an increase in noise can also explain the small

decrease in the maximum rate of Ts choices on mS trials. Third

andmost importantly, mS did not abolish the improved sensitivity

to motion on trials when Ts was available but waived, as indi-

cated by the steeper slope of the solid compared to the dashed

curves (Figure 2B, bottom; logistic regression, p < 10�24 for both

mS and no-mS conditions tested separately). Recall that this

improvement is a sign that the monkey evaluated the reliability

of the evidence and communicated its direction choice when

the reliability seemed high (Kiani and Shadlen, 2009). Its pres-

ence on mS trials implies that such evaluation of evidence is not

compromisedby artificiallymanipulating the sensory representa-

tion. It also means that mS did not simply compel the monkey to

choose the preferred direction with some probability, irrespec-

tive of the state of the perceptual evidence. Rather, it exerted

its effects by changing the available evidence for the decision.

Controls: High-Current Stimulation and a Visual
Perturbation
The data presented thus far suggest that mS does not reduce

the monkey’s overall degree of certainty but instead resembles

a change in visual motion. However, it is possible that the

absence of an increase in the overall frequency of Ts choices

on mS trials was due to the monkey’s inability or unwillingness

to choose Ts beyond some rate throughout the experiment.

One way to test this possibility is to apply a mS condition that

impairs discrimination performance (e.g., by deliberately weak-

ening the differential directional signals underlying choice). This

kind of impairment can be achieved simply by increasing the

current amplitude, thus activating indiscriminately a larger pop-

ulation of neurons with a broad distribution of preferred direc-

tions (Murasugi et al., 1993). Thus, at eight sites, after

completing a block of trials with standard low-amplitude pulses

(7.5 mA), we began a second block with 75 mA pulses while

keeping all other parameters identical. High-current mS reduced

the monkey’s sensitivity to motion (logistic regression, p <

10�19; Figure 3B) and also led to a greater proportion of Ts
choices (no-mS = 0.45 ± 0.01; mS = 0.49 ± 0.02; p < 0.05; Fig-

ure 3A). The latter effect can be described as primarily a

widening, rather than a shift, of the sure-bet function, driven

by a pronounced increase in Ts choices for the highest motion

strengths. The result implies that PDW does not lack the power

to expose a decrease in confidence, and it reinforces the notion

that decision accuracy and confidence are linked. Indeed this

link was also present in the main experiments: across sessions,

flatter choice functions were associated with wider sure-bet

functions (Spearman’s rank correlation, r = �0.55, p < 10�5),

and the modest changes in these two metrics caused by low-

current stimulation were correlated (r = �0.37, p < 0.004; see

Supplemental Experimental Procedures).

In a second control experiment, instead of stimulating the

brain electrically on half the trials, we manipulated the visual

stimulus in a manner that mimics the hypothesized effect of

mS. We reasoned that if the brain interprets mS like a change

in motion strength, we should approximate the effects of mS

on choice and PDW by simply adding an offset to the motion
Neuron 83, 797–804, August 20, 2014 ª2014 Elsevier Inc. 799
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Figure 3. Stimulation with High Current Disrupts Both Accuracy and

Confidence

(A and B) Combined data from eight experiments using 75 mA stimulation (n =

4,483 trials). Same conventions as Figure 2B. Smooth curves are best fits of

the extended model described in the Supplemental Experimental Procedures

(see also Figure S2).

Figure 4. Bounded Evidence Accumulation Model Explains PDW

and Effects of mS

(A) Colored traces represent the accumulation of noisy motion evidence (i.e.,

from MT/MST) on three individual (simulated) trials. Evidence is drawn from a

Gaussian distribution with mean (R) proportional to motion strength and SD (s)

equal to 1. Decision formation terminates when the stimulus is turned off (green

and blue trials) or when the accumulated evidence (the decision variable, x)

reaches a bound at ±B (red trial). (B) The model prescribes a sure-bet choice

when the logarithm of the odds of being correct is below a fixed threshold, q,

indicated by the black contours which divide the x, t plane into low- and high-

confidence regions. For example, the blue trial in (A), but not the green trial,

would have ended in a sure-bet choice. (C and D) The probability density of the

decision variable across time is shown for a particular motion coherence

(3.2%, i.e., weak preferred-direction motion), either without (C) or with (D) mS.

Bias in this example was set to zero for simplicity. Microstimulation shifts the

density upward, thereby decreasing the probability of a sure bet and

increasing the probability of a preferred choice (see Figure S4). A key

assumption of the model is that the brain applies the same mapping between

accumulated evidence and the expected log odds of being correct (i.e.,

confidence), and the same criteria for opting out (black contours in B–D),

irrespective of the presence of mS.

Neuron

Effects of MT Microstimulation on Choice Certainty
coherence, termed Dcoh, in one arbitrary ‘‘preferred’’ direction

(Salzman et al., 1992). We performed 42 such experiments,

using a range of Dcoh values (varied across sessions) to

approximate the range of mS effects in the main experiment.

Like mS, Dcoh trials were rewarded based on the direction of

motion that would have occurred in the absence of a coher-

ence offset. As expected, the Dcoh manipulation shifted the

pattern of direction and Ts choices by an amount similar to

the magnitude of added coherence. The results were largely

comparable to mS sessions, including similar shifts of the Ts
curve and the choice function (Figures S1B and S3B), similar

effects on direction choices with and without the Ts offer (Fig-

ure S3C; p = 0.26, paired t test), and improved sensitivity on

Ts-waived trials (Figure S3B, bottom; logistic regression, p <

10�17). A notable difference from mS is the lack of an effect

on the maximum rate of Ts choices (compare Figure 2B [top]

versus inset; see below and Supplemental Experimental

Procedures).

A Common Mechanism for the Effect of
Microstimulation on Choice and Confidence
In the absence of mS, both direction choices and PDW are ex-

plained by the accumulation of noisy evidence bearing on the
800 Neuron 83, 797–804, August 20, 2014 ª2014 Elsevier Inc.
direction of motion (Kiani and Shadlen, 2009) (Figure 4A). The

model assumes that (1) a direction choice is based on the sign

of the accumulated evidence and (2) a sure-bet choice super-

sedes a direction choice if the odds that the direction choice

will be correct are less than a criterion, q (Figure 4B). The latter

requires the brain to have implicit knowledge of the association

between the accumulated evidence, termed a decision variable

(DV), and the likelihood that a decision based on this evidence

will be correct. We fit this model to the monkey’s direction and

Ts choices on no-mS trials (Figure 2B, top and bottom, blue sym-

bols) and then incorporated the effect of mS as a perturbation of

the evidence, equivalent to a change inmotion coherence and/or

a change in sensory noise (see Supplemental Experimental Pro-

cedures). The parameters implementing mS were fit using only

the Ts choices on mS trials (Figure 2B, top, red symbols). We

then used the fitted parameters to predict the pattern of direction

choices on mS trials, both with andwithout the Ts option available

(Figure 2B, bottom, red filled and open symbols). Importantly, we

did not allow mS to alter the association between DV and



Table 1. Maximum-LikelihoodEstimatesofModelParameters,±SE

mS Data Set

(n = 53,134 Trials)

Dcoh Data Set

(n = 43,054 Trials)

a 0.294 ± 0.001 0.291 ± 0.002

B 31.6 ± 1.30 31.2 ± 1.00

g �0.0134 ± 0.0002 �0.0224 ± 0.0002

q 0.609 ± 0.004 0.507 ± 0.004

dC 0.112 ± 0.001 0.173 ± 0.001

ds2 0.237 ± 0.015 0.039 ± 0.006
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confidence or the criterion for selecting Ts (i.e., q). This strategy

formalizes the qualitative assertion that mS-induced changes in

neural activity are processed like vision-induced changes in neu-

ral activity. In other words, the brain does not know that it is being

stimulated.

The model fits and predictions are shown by the smooth

curves in Figure 2B (and dashed curves in Figures 1B–1D).

They capture several key features of the data: (1) the relationship

between Ts choices and trial difficulty (i.e., motion strength and

viewing duration; Figures 1B and 2B, top, blue curve), (2) the

improvement in sensitivity when Ts was offered but waived (Fig-

ure 2B, bottom: solid versus dashed curves; Figures 1C and 1D),

and (3) the main effects of mS on choice and PDW (Figure 2B,

horizontal shift of red versus blue curves).

Not surprisingly, the model explains the results from the

Dcoh experiment as well (Figure S3B), but it also helps

explain the key discrepancy between the effects of Dcoh and

microstimulation. For the mS experiments, an adjustment to

the variance of the DV (ds2 ; Equation S8; Supplemental Exper-

imental Procedures) largely accounted for the small decrease in

sensitivity to motion on mS trials (Table 1), whereas this adjust-

ment was negligible for the Dcoh manipulation, which did not

affect sensitivity to motion (p = 0.68, logistic regression). Inter-

estingly, the added variance also explains the apparent in-

crease in confidence (decrease in Ts choices) associated with

stimuli near the point of maximum ambiguity (Figure 2B, top,

red curve). It may seem counterintuitive that an increase in vari-

ance (i.e., sensory noise) would predict an increase in confi-

dence, but it is readily explained in our framework because

dispersion of the DV away from the starting level causes

more of its density to lie outside the region for opting out of

the direction decision (see Rahnev et al., 2012 for a similar

explanation).

We considered and rejected several alternative models, the

most important of which allow for the possibility that mS in-

duces a change in either the mapping of the DV to confidence

or the criterion—applied to this mapping—for opting out. Spe-

cifically, we relaxed the assumption that the criterion (q) was

unaffected by mS. This is important because allowing mS to

affect q is tantamount to accepting that mS induces a change

in neural activity that is processed qualitatively differently

than activity caused by visual motion. We found that this exten-

sion was not justified for the main data set (see Supplemental

Experimental Procedures). Note that the effects of mS on

choice (Figure 2B, bottom, solid and dashed red curves) were

predictions of the model, based on the fit to the rest of the
data. The impressive agreement to data leads us to conclude

that microstimulation did not alter the quantitative relationship

between the neural representation of evidence and its mapping

to a degree of certainty. In this way, the modeling exercise sup-

ports a unified theory of choice, confidence, and—by extension

to previous work (Ditterich et al., 2003; Hanks et al., 2006)—re-

action time.

DISCUSSION

Cortical microstimulation in behaving monkeys has long been a

fruitful approach for exposing causal relationships between

neural activity and perception (Bartlett and Doty, 1980; Doty,

1965). The power of the technique lies in its ability to link the

functional properties of sensory neurons (e.g., direction selec-

tivity in MT/MST) with psychophysical performance, as shown

previously in several brain areas and tasks (Afraz et al., 2006;

DeAngelis et al., 1998; Gu et al., 2012; Romo et al., 1998; Salz-

man et al., 1990). However, subjects in these studies typically

report only a primary decision about the sensory stimulus.

Here we have stimulated direction-selective neurons while

allowing monkeys to report something additional about the de-

cision process: their confidence, or lack thereof, in the choice.

We found that mS affected confidence as if there were an offset

to the visual evidence supporting the choice. The results sup-

port a quantitative framework in which confidence emerges

from the same basic mechanism—bounded evidence accumu-

lation—that successfully accounts for choice and reaction time.

Thus, combined with previous studies (Ditterich et al., 2003;

Salzman et al., 1990), there is now experimental evidence

that links the activity of neurons in extrastriate visual cortex

in a causal fashion to all three pillars of choice behavior (Vick-

ers, 1979).

Some might wonder whether this is in any way surprising,

given what we know from previous work (Bisley et al., 2001;

Ditterich et al., 2003; Romo et al., 1998; Salzman et al.,

1992). In fact, our study could have turned out differently

because microstimulation induces a pattern of activity that is

quite different from that caused by visual stimulation. This

pattern could have failed to engage the same networks that

normally read out sensory information for the purpose of

computing confidence (Bach and Dolan, 2012; Barttfeld et al.,

2013). Had mS induced incongruous changes in choice and

confidence—or interfered with the improvement in sensitivity

achieved by opting out of select trials—it would not have called

into question previous findings of the effects of microstimula-

tion on choice and reaction time. In short, the linking hypothe-

sis tested here was by no means a foregone conclusion.

Indeed, one might expect confidence to rest heavily on factors

(e.g., metacognitive or affective) beyond operations on evi-

dence and its conversion to a decision, especially considering

the proposed role of higher-order structures (Kepecs et al.,

2008; Komura et al., 2013; Rounis et al., 2010). Our findings

do not directly conflict with these previous studies, but

they do support a relatively straightforward mechanism for

computing confidence in a perceptual decision (Kiani and

Shadlen, 2009)—one that is tightly linked to the decision pro-

cess itself.
Neuron 83, 797–804, August 20, 2014 ª2014 Elsevier Inc. 801
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Monkeys can be trained to detect microstimulation in a num-

ber of brain areas (Histed et al., 2013; Murphey and Maunsell,

2007), and we cannot rule out the possibility that they could

detect its presence in the current study. What we do know is

that they are unable or unwilling to counteract the effects of mS

on choice (and confidence), even though doing so would in-

crease reward rate. The presence of a compensatory choice

bias against the stimulated direction (Figure 2B, bottom, right-

ward shift of blue curves; Salzman et al., 1992) further argues

that monkeys do not differentiate between mS and non-mS trials.

They do not adjust their strategy solely on mS trials but instead

adjust their bias on all trials, reducing errors caused by mS at

the cost of more errors when mS was absent. Even if mS were

detectable, our results suggest that such detection did not

disrupt the critical aspect of the decision process that estab-

lishes a level of confidence. From the perspective of downstream

brain areas, the additional perturbation caused by mS ofMT/MST

is largely equivalent to a change in the neural activity produced

by a visual stimulus.

We were able to explain the monkey’s PDW behavior using

the same bounded drift-diffusion model used to explain direc-

tion choices and RT in previous studies (Gold and Shadlen,

2007; Kiani and Shadlen, 2009; Link, 1992; Palmer et al.,

2005; Smith and Vickers, 1988). The model exploits the associ-

ation between the DV and the probability that a choice based on

that DV will be correct, predicting a sure-bet choice when this

probability is below a fixed threshold. This model can explain

the principal effects of mS by treating it as an offset to the mo-

tion strength (Figures 2B and S4). Importantly, the model ex-

plains the assignment of confidence in a single decision based

on an evolving DV. An alternative is that the monkey identifies

the motion coherence and opts out with some frequency based

on a learned association between coherence and the probabil-

ity of being correct. However, this interpretation is contradicted

by the improvement in performance—for all motion strengths

and durations—on trials where the sure bet was offered and

waived. The improvement implies that the brain is opting out

selectively, based on a prediction that the decision reached

during motion viewing is likely to be correct. The observation

is also incompatible with other alternatives, such as selecting

Ts following lapses of attention or evading the motion decision

entirely on some fraction of trials (i.e., wishing for Ts and simply

guessing if it does not become available). Importantly, the

model explains the degree of improvement with impressive

fidelity (Figure 2B, bottom, blue curves) and is able to predict

the similar pattern on mS trials (Figure 2B, bottom, red curves)

based on a fit to the other features of the data (see Supple-

mental Experimental Procedures). The fact that this improve-

ment is preserved on mS trials is notable and could not have

been predicted from previous work. It suggests that a rather

sophisticated capacity to assess the reliability of sensory evi-

dence is maintained despite the unnatural pattern of neural ac-

tivity induced by mS.

In addition to shifting the sure-bet curve, mS also slightly

reduced the peak rate of Ts choices (Figure 2B, top). The lack

of such an effect in the Dcoh control experiment (Figure 2B,

top, inset) suggests that this is a consequence of mS itself rather

than any analysis method or incidental feature of the task, such
802 Neuron 83, 797–804, August 20, 2014 ª2014 Elsevier Inc.
as reward contingencies or the compensatory bias. The change

in peak Ts frequency can be explained if we assume that mS af-

fects both the signal and the noise of the sensory representation.

In the context of bounded evidence accumulation, adding noise

effectively increases the likelihood that the DV will diffuse away

from zero (i.e., neutrality) and beyond the threshold for waiving

Ts. This explanation is also consistent with the small decrease

in sensitivity associated with mS. Note that an effect on noise is

distinct from the proposed mechanism by which high-current

stimulation reduces perceptual sensitivity (Figures 3 and S2;

see Supplemental Experimental Procedures). The latter is

believed to result from the spread of current to multiple columns

with different preferred directions (Murasugi et al., 1993)—a dilu-

tion of signal rather than an increase in noise. Even low-current

stimulation may spread across columns in some cases, but the

changes in confidence that we observed suggest an effect on

noise per se, the mechanism of which remains unknown. This

subtle effect notwithstanding, a key conclusion from the model

is that mS does not influence higher-level aspects of decision

strategy, such as the internal mapping between the state of the

accumulated evidence and the likelihood of making a correct

choice.

It seems uncontroversial that signals in the visual cortex would

affect both choice and certainty, but it is remarkable that the

coupling should be so well explained by a common mechanism.

After all, certainty and confidence invite consideration of temper-

ament, mood, and subjective experience about the decision pro-

cess itself (e.g., metacognition). Thus, it is noteworthy that the

monkeys did not exercise the option to indicate that something

was peculiar about the decision process on trials accompanied

by mS. In effect, the monkeys have communicated just the oppo-

site: they ‘‘wager’’ as if they experienced a change in the visual

stimulus. Moreover, the high-current mS experiments (Figure 3A)

reassure us that the monkey is in fact able to use PDW to report

decreased confidence when it occurs. Of course, we do not

know what monkeys experience subjectively when we stimulate

the brain, nor can we interrogate the subjective feeling of cer-

tainty itself. That said, any neuroscientific investigation is unlikely

to furnish this level of explanation. What seems certain is that a

quantitative reconciliation of choice, RT, and confidencewill pro-

vide a basis for extending the neurobiology of decisionmaking to

more complex situations in which confidence itself plays a

critical role.

EXPERIMENTAL PROCEDURES

Behavioral Task

Two adult male rhesus monkeys (Macaca mulatta) were trained to perform a

direction discrimination task with postdecision wagering (PDW), as described

previously (Kiani and Shadlen, 2009). The task (Figure 1A) was to determine the

net direction of motion in a circular patch of dynamic random dots. Motion

could be in one of two directions separated by 180�, and difficulty was

controlled by varying both the viewing duration (truncated exponential distri-

bution, mean = 270 ms, range = 60–880 ms) and the percentage of coherently

moving dots (motion coherence: 0%, 3.2%, 6.4%, 12.8%, 25.6%, or 51.2%).

After acquiring central fixation, two direction-choice targets appeared on

opposite sides of the fixation point (9�–12� eccentricity), followed by the

random dot motion display. After motion offset, the monkey maintained fixa-

tion through a variable delay period (range = 500–1,000 ms), during which a

third target (the sure-bet target [Ts]) appeared on a random half of trials.
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Importantly, the monkeys could not predict whether Ts would appear until at

least 500 ms after stimulus offset, strongly encouraging them to complete a

direction decision on all trials. Ts differed in color and size from the direc-

tion-choice targets andwas positioned at an angle perpendicular to themotion

axis at 6�–8� eccentricity.
After the delay period, the fixation point disappeared, cueing the monkey to

make a saccadic eye movement to one of the targets. When given the oppor-

tunity, the monkey could choose Ts and receive a guaranteed reward (drop of

water or juice) or waive Ts andmake the higher-stakes direction choice. Correct

direction choices yielded a larger liquid reward than Ts choices, while errors re-

sulted in a 5–6 s timeout. The ratio of Ts reward size to direction-choice reward

size (0.75–0.82 for monkey I, 0.64–0.72 for monkey D) was chosen to

encourage the animals to choose Ts approximately 50% of the time at the

weakest motion strengths. The ratio was not adjusted during the course of

an experiment.

Surgery and Neurophysiological Methods

All procedures were in accordance with National Institutes of Health guide-

lines and approved by the Institutional Animal Care and Use Committees at

the University of Washington and Columbia University. Animals were im-

planted with a head post and recording chamber using aseptic surgical

methods. Electrical microstimulation and multiunit recordings were made

with tungsten electrodes (Alpha Omega, impedance = 0.5–2 MU measured

at 1 kHz). Areas MT (n = 32 sites) and MST (n = 31) were identified using struc-

tural MRI scans and standard physiological criteria, as well as histological

analysis in one animal. Stimulation sites were chosen based on strong direc-

tion selectivity and consistent tuning (across �200 mm of cortex) for the direc-

tion, speed, and size of the motion stimulus (see Supplemental Experimental

Procedures for details).

Once we encountered an acceptable site, we positioned the electrode tip

near its center and began the discrimination task. On a random half of trials,

including both Ts-present and Ts-absent trials, microstimulation was deliv-

ered through the recording electrode using a Grass S88 stimulator with two

PSIU6 optical isolation units (Grass Technologies). Stimulation trains con-

sisted of square-wave, biphasic pulses with the following parameters: 5,

7.5, or 10 mA; 200, 250, or 333 Hz, 0.4 ms negative and 0.4 ms positive phase

(negative phase leading). Within these ranges, no systematic effects of pulse

amplitude or frequency were detected. The pulses began 40 ms after motion

onset and stopped 40 ms after motion offset to account for visual response

latency. For eight sites in one monkey, following the standard block of trials,

an additional block was collected in which the amplitude of pulses was

increased to 75 mA (‘‘high-current’’) while all other parameters remained the

same. Note that our pulse duration (0.4 ms) was longer than in previous

studies by a factor of 1.33 (Ditterich et al., 2003) or 2 (Murasugi et al., 1993;

Salzman et al., 1992).

We performed a set of control experiments with the same task design and

stimuli, except that electrical microstimulation was replaced with an offset to

the motion coherence assigned by the computer on a given trial (dubbed

‘‘added-signal’’ trials in Salzman et al., 1992). The coherence offset (Dcoh)

was fixed for a given session and varied from 5%–40% coh across sessions

(see Figures S1B and S1C).

Behavioral Data Analysis

We fit the direction choices to the logistic regression model given by:

Ppref =
�
1+ e�Q

��1
; Q= b0 + b1IE + b2C (Equation 1)

where Ppref is the probability of a preferred-direction choice, C is signed

motion coherence, IE is an indicator variable for mS (1 or 0 for trials with/

without mS), b0 is the overall bias, b1 estimates the effect of mS on the direc-

tion choice, and b1/b2 expresses this in units of motion coherence. Fitting

was performed by the method of maximum likelihood (binomial error), with

SEs of the parameters obtained from the inverted Hessian matrix. SEs

were used to compute t statistics and thereby evaluate the null hypothesis

(e.g., b1 = 0). Effects of mS on choice were similar between MT and MST

(two-sample K-S test, p = 0.39); thus, we pooled the data from the two areas

for all analyses.
To quantify the change in sensitivity associated with mS, we fit the logistic

model given by:

Ppref =
�
1+ e�Q

��1
; Q= b0 +b1IE + b2C+ b3IEC (Equation 2)

where b3 captures the effect on sensitivity. Similarly, the difference in sensi-

tivity with and without Ts present (Figure 2B, bottom) was examined by replac-

ing IE in Equation 2 with an indicator term for Ts.

For some analyses, we fit the probability of sure-bet choices as function of

signed coherence with a Gaussian function (Supplemental Experimental Pro-

cedures, Equations S1 and S2). Note that the smooth curves in Figures 2B, 3,

S2A, and S3 were generated from the bounded accumulation models (see

below), not logistic regression or Gaussian fitting. For additional methods

and results related to the Gaussian fits, see Supplemental Experimental

Procedures.

Model Fits and Predictions

Here we provide an intuitive overview of the model (Figure 4) and fits displayed

in Figures 1B–1D, 2B, and S3B. Variables constituting degrees of freedom are

identified by bold font and listed in Table 1. For mathematical details, see Sup-

plemental Experimental Procedures.

We explain choice and PDW using a simplified one-dimensional diffusion

process (Gold and Shadlen, 2007; Kiani and Shadlen, 2009; Link, 1992;

Ratcliff and Rouder, 1998; Smith and Vickers, 1988) in which noisy

evidence favoring either direction (and against the other) is accumulated

for its display duration or until the process reaches an upper or lower

bound, ±B. The bounds would explain reaction time in other contexts,

whereas here they render decision times shorter than the display duration

on some trials, and they affect the predicted accuracy on these trials

(Kiani et al., 2008). The accumulation has a drift and a diffusion component.

The latter is the accumulation of independent random numbers at each

time step. The drift is a line with slope (drift rate) proportional to the

motion coherence (aC), where the sign of C indicates direction. The sign

of the accumulated evidence, termed the decision variable (x), determines

the choice. Confidence, in turn, is the log odds that such a choice

would be correct. It is a function of both x and time (i.e., the stimulus

duration or the time that the accumulation reached a bound). The time

dependence arises because the reliability of the evidence (motion strength)

varies unpredictably across trials and is not explicitly known by the

observer (Drugowitsch et al., 2014; Kiani and Shadlen, 2009). When Ts is

offered, we assert that the monkey exercises or waives this option based

on a criterion, q, applied to the log odds of being correct (Figures 4B–4D).

The model generates the expected probability of each option by propagat-

ing and integrating the probability density of the decision variable within

different regions of this space, as partitioned by q and the bounds (Figures

4C and 4D).

On trials with mS, we assume that the drift rate is offset by dC, equivalent to a

change in the motion coherence, and allow for the possibility that the diffusion

noise is also affected (offset by ds2 ). On all trials, the drift rate includes an addi-

tional offset term g to account for the compensatory bias that arises in micro-

stimulation experiments (Salzman et al., 1992).

We employed a simple parameterization and tiered fitting strategy de-

signed to minimize the number of degrees of freedom of the model (see Sup-

plemental Experimental Procedures). We pursued this strategy to guard

against over fitting and to support intuitions about the neural mechanisms.

The model furnishes the smooth curves in the analyses of the main data

set (low current mS) and the Dcoh control (Figures 2B and S3B, respectively;

see also Figure S4), as well as the dashed curves in Figures 1B–1D. A more

elaborate model, also described in the Supplemental Experimental Proce-

dures, was required to explain the effects of high current stimulation (Figures

3 and S2).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.neuron.2014.07.011.
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