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The quantitative study of decision-making has traditionally rested on three key behavioral measures: accuracy, response time,

and confidence. Of these, confidence—defined as the degree of belief, prior to feedback, that a decision is correct—is least

well understood at the level of neural mechanism, although recent years have seen a surge in interest in the topic among

theoretical and systems neuroscientists. Here we review some of these developments and highlight a particular candidate

mechanism for assigning confidence in a perceptual decision. The mechanism is appealing because it is rooted in the same

decision-making framework—bounded accumulation of evidence—that successfully explains accuracy and reaction time in

many tasks, and it is validated by neurophysiology and microstimulation experiments.

The merits of self-knowledge were well known to the

ancients, as reflected in the Confucian saying: “When you

know a thing, to hold that you know it; and when you do

not know a thing, to allow that you do not know it—that

is knowledge” (Analects, 2:17). A rudimentary but im-

portant form of self-knowledge is the degree of certainty,

or confidence, one has in a decision (e.g., whether it is

correct or will lead to a desired outcome). In many

instances,1 a judgment of confidence boils down to the

question: How reliable was the evidence on which my

decision was based? Here, evidence is meant to include

external events transduced by the senses, as well as inter-

nal signals derived from memory. It seems likely that

evidence from multiple sources, along with other factors

such as biases and prior expectations, converges onto an

internal representation that governs the choice. As we will

show, the same process that converts evidence to a choice

can additionally explain not only the time required to

make the decision but also the confidence associated

with it.

Confidence has obvious practical and social value in

our daily lives. Any time you attempt to convince some-

one that something is true, or justify a course of action,

your degree of certainty guides the interaction. Confi-

dence serves to modulate learning rates and the allocation

of attentional resources (Dayan et al. 2000), and it enables

online regulation of the decision process itself (Vickers

1979). More generally, confidence is crucial for behavior

in complex environments where sequences of decisions

must be made without immediate feedback. This type of

problem is common to most animals, as it includes deci-

sions about foraging (explore or exploit?) and predator

avoidance (hide or flee?). Yet in common parlance it also

carries an air of subjectivity that would seem to preclude

its study in animal models. This is a challenge if we wish

to study confidence at a mechanistic level using the full

toolkit of neuroscience. Fortunately, recent advances

have begun to break through this barrier. Researchers

interested in the neurobiology of decision-making have

taken on the problem in earnest, buoyed by the propaga-

tion of new behavioral paradigms that allow an assess-

ment of confidence in nonverbal animals. One might say

that, in neuroscience at least, confidence no longer plays a

“Cinderella role. . ., overlooked as an interesting variable

in its own right” (Vickers 2001).

Psychologistshave long recognized two main sources of

information for generating confidence judgments: evi-

dence strength and decision time. The relative emphasis

on the latter has waxed and waned over the decades, and

recent studies in both humans (e.g., Rahnev et al. 2011; Ko

and Lau 2012) and animals (Kepecs et al. 2008; Komura

et al. 2013) have employed signal-detection models that do

not involve the temporal dimension at all. However, most

decisions are based on streams of evidence rather than

single observations and generally incorporate a termina-

tion rule that implements the trade-off between speed and

accuracy. Thus, the decision process is naturally conceived

as the accumulation of evidence over time, formalized

with a variety of models based on sequential analysis

(Stone 1960; Laming 1968; Link and Heath 1975; Ratcliff

1978; Vickers 1979). These models have been highly suc-

cessful in explaining the speed and accuracy of decisions

in multiple settings, and they find support in neurophysi-

ological observations (Gold and Shadlen 2007; Shadlen

and Kiani 2013). We will describe recent work (Kiani and

Shadlen 2009; Fetsch et al. 2014; Kiani et al. 2014a) that
1Naturally, we are unable to cover every sense of the word confidence

(but see Conclusions).
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extends the bounded accumulation framework in a way

that—building on insights by Vickers and others—parsi-

moniously explains confidence and is consistent with neu-

rophysiology. We will also touch on a few lesser known

implications of these advances—the nature of noise, bias-

es, and other forms of confidence—and propose some

future directions.

EVIDENCE AND TIME: ORIGINS OF THE

PSYCHOPHYSICAL STUDY OF CONFIDENCE

Confidence was first approached in a quantitative man-

ner by a second generation of experimental psychologists

(Peirce and Jastrow 1884; Fullerton and Cattell 1892) who

began to question the assumption of their forebears—

Fechner, Weber, and Wundt—of a “just-noticeable” dif-

ference or increment. The strong version of this idea,

known as absolute- or high-threshold theory, asserts that

variations in the internal representation of a stimulus (or

difference between stimuli) cannot influence a percept

unless they result in the crossing of an absolute threshold.

Below the threshold, or within a just-noticeable incre-

ment, changes in stimulus intensity or difference magni-

tude affect only the probability of threshold crossing, not

the quality of the sensation. By the end of the 19th cen-

tury, however, it became evident that the nervous system

permits smooth gradations of “clearness” in discrimina-

tion (Fullerton and Cattell 1892), an intuitive concept that

opened the door to the rigorous measurement and mod-

eling of subjective confidence judgments.2

For confidence to be useful, it ought to predict accuracy

on average, at least weakly.3 Indeed, the empirical rela-

tionship between confidence and accuracy inspired the

first attempt to describe confidence using an equation,

namely as the scaled logit of probability correct (Peirce

and Jastrow 1884). Later experiments (Garrett 1922;

Johnson 1939; Festinger 1943; Pierrel and Murray

1963) found that in fact confidence is more tightly cou-

pled to evidence strength or discriminability than to ac-

curacy per se. In parallel, another school of thought was

emerging based on an observed inverse relationship be-

tween confidence and the time taken to reach a decision

(reaction time, RT; Henmon 1911; Seward 1928; Kellogg

1931; Volkmann 1934; Johnson 1939; Audley 1960). The

consistency of the trend led some authors to conclude

that the level of confidence might be dictated entirely

by RT (Volkmann 1934; Reed 1951) or, relatedly, the

number of contradicting observations leading up to the

choice (Audley 1960). According to this view, confi-

dence bears a positive relationship with evidence strength

and accuracy solely as a by-product of being inversely

related to time, because those other quantities are also

inversely related to time.

To reconcile these findings, Vickers emphasized the

distinction between the two ways a decision process

may be terminated (Vickers 1979; Vickers and Packer

1982). Intuitively, if the experimenter controls the stim-

ulus duration, then longer trials will tend to deliver more

information and result in greater accuracy. In this case

(“time-limited,” Fig. 1A,B), confidence should increase

as a function of time. If instead the subject decides when

to terminate the decision (“information-limited,” Fig.

1C), longer decisions will be associated with lower dis-

criminability and hence lower confidence. This insight,

and its agreement with data (e.g., Irwin et al. 1956; Aud-

ley 1960), led Vickers to posit the balance-of-evidence

(BE) hypothesis (Vickers 1972), in which confidence is a

function of the difference between accumulated evidence

totals favoring the chosen and unchosen option. With BE,

a single mechanism can be responsible for confidence

judgments in both types of task yet produce the opposite

relationship with trial duration.

Importantly, the BE hypothesis implies that the pri-

mary relationship is between evidence strength and con-

fidence; the correlation between RT and confidence is

incidental (Vickers 2001)—a property shared by more

recent work as well (Rolls et al. 2010; Zylberberg et al.

2012; Ratcliff and Starns 2013). In contrast, our recent

findings (Kiani and Shadlen 2009; Fetsch et al. 2014;

Kiani et al. 2014a) support a role for time in and of itself,

as explained below.

A TALE OF TWO THEORIES

From the last century of psychophysical inquiry

emerged two general frameworks that form the backbone

of the modern study of confidence: signal-detection the-

ory (SDT) and sequential analysis (SA). According to

SDT (Peterson and Birdsall 1953; Tanner and Swets

1954; van Meter and Middleton 1954), an observation

is drawn from one of two overlapping distributions, and

the goal of the observer is to determine which distribu-

tion. In detection tasks, the two distributions represent

“noise” and “signal plus noise,” whereas in discrimina-

tion tasks they might represent the two alternatives being

discriminated. In either case, the decision is made by

converting the noisy observation to a decision variable

(DV) and comparing it with a criterion. Because the DV

is monotonically related to the probability of making the

observation given the state of the world (Swets et al.

1961; Gold and Shadlen 2001), its distance from the cri-

terion is a reasonable proxy for confidence. The seeds of

this idea actually predated formal SDT with the theory of

Cartwright and Festinger (1943), but it matured in the

ensuing decades among researchers across several disci-

plines (Norman and Wickelgren 1969; Kinchla and

Collyer 1974; Ferrell and Mcgoey 1980; Treisman and

Faulkner 1984).

SDT-based models of confidence remain highly influ-

ential in psychology and neuroscience (Higham 2007;

2It also presaged the more flexible criterion that underlies signal-
detection theory (SDT; see below).

3If we define a decision as a commitment to a proposition or hypoth-
esis, then confidence is the subjective (Bayesian) probability—for a
single decision—that the hypothesis is true, given the data. This differs
from accuracy, which is the objective (frequentist) probability—across
multiple decisions—that the chosen hypothesis was true. The reason
these quantities are not equivalent, except under certain conditions,
has recently been clarified by Drugowitsch et al. (2014).
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Kepecs et al. 2008; Rounis et al. 2010; Rahnev et al.

2011, 2012; Ko and Lau 2012; Komura et al. 2013; Lak

et al. 2014; Scott et al. 2014). However, these models

are fundamentally limited: they cannot explain the time

it takes to reach a decision nor the effects of decision time

on confidence mentioned above. Of course, all models

simplify to some degree, but in this case time is not just a

detail that can safely be ignored for convenience. As we

shall see, deliberation time is a key factor in the determi-

nation of confidence when there is a speed-accuracy

trade-off at play—that is, when the decision-maker ter-

minates a decision based on accumulated evidence.4 In

such settings, not only does time play a role in computing

confidence, but also the key prediction of “distance from

criterion” is reversed (see below). This is not to minimize

the relevance of SDT, nor to rule out a distance-from-

criterion mechanism in all cases (e.g., when the task in-

volves little or no deliberation; Zariwala et al. 2013). But

in line with the psychophysical tradition, it seems clear

that a general neural theory of confidence must include

the dimension of time.

A natural starting point for such a theory can be found

within the family of models involving sequential analy-

sis, a statistical decision process that can be viewed as an

extension of SDT into the time domain (Fig. 2A). Enthu-

siasm for SA models—which include bounded evidence

accumulation, drift-diffusion, and race models—derives

from their effectiveness in explaining choice and RT dis-

tributions across many domains5 (Busemeyer 1985; Luce

1986; Reddi et al. 2003; Ratcliff and Smith 2004; Kraj-

bich and Rangel 2011; DasGupta et al. 2014), as well

as their robust neural correlates (Smith and Ratcliff

2004; Gold and Shadlen 2007; Heekeren et al. 2008;

Ploran et al. 2011). When monkeys are trained to report

the outcome of a decision with an eye movement, neu-

rons related to oculomotor planning show persistent ac-

tivity resembling the accumulation of noisy evidence

toward a threshold or bound (Hanes and Schall 1996;

Shadlen and Newsome 1996; Kim and Shadlen 1999;

Horwitz and Newsome 2001; Roitman and Shadlen

2002; Ratcliff et al. 2003). In the lateral intraparietal

area (LIP), this activity reflects not only the mean (Roit-

man and Shadlen 2002; Huk and Shadlen 2005; Kiani

et al. 2008) but also the variance and autocorrelation

(Churchland et al. 2011) of an evolving DV that explains

choice and RT. As shown next, our recent work extends

the bounded accumulation framework to explain how the

brain might arrive at a prediction about the accuracy of a

decision.

BOUNDED EVIDENCE ACCUMULATION

UNIFIES CHOICE, RT, AND CONFIDENCE IN

A COMMON FRAMEWORK

A feature of SA models is their explicit representa-

tion of both time and evidence, the principal ingredients

for establishing a level of confidence. A key insight is

that the amount of accumulated evidence (i.e., the state of

the DV) at the time of the choice is associated with a

particular probability that the decision will be correct

(Fig. 2B). Kiani and Shadlen (2009) hypothesized that

the brain uses implicit knowledge of this association, or

mapping, to establish a degree of confidence in the

choice, harnessing the same decision-making machinery

that gives rise to the choice itself and the time it takes to

decide.

Coming up with a way to test the hypothesis at the level

of neurophysiology was not trivial: How does one ask a

laboratory animal how confident it is? Fortunately, some

promising answers to this question had recently been
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Figure 1. Confidence as the balance of evidence (BE) predicts different relationships with decision time depending on how the
decision terminates. (A,B) Accumulated evidence totals favoring two options, as a function of time or number of observations, are
depicted schematically as lines of different slope (blue ¼ chosen option, black ¼ unchosen). When the environment or experimenter
dictates the time of commitment (A,B), (e.g., by soliciting a choice after 2, 6, or 10 observations), the BE (length of vertical dashed
lines) increases with elapsed time. The pattern holds for both low (A) and high (B) discriminability. (C) If on the other hand the
decision is terminated when accumulated evidence reaches a threshold (red line), BE decreases with elapsed decision time, because the
latter is inversely related to discriminability (three different levels are shown as shades of blue). Note that this relationship breaks down
when negative increments are allowed (i.e., if accumulators are anticorrelated; see description of Kiani et al. [2014a] below for details).
(Adapted from Vickers and Packer 1982.)

4Note that the brain may apply such a termination rule even when the
environment or experimenter controls stimulus duration (Kiani et al.
2008).

5Why do evidence accumulation/drift-diffusion models provide such
good fits to choice and RT data even when the task does not involve a
continuous stream of evidence to integrate? This is an important question
for future work, but we speculate the common feature is the sequential
nature of updating (e.g., repeated queries of a mnemonic representation).
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Figure 2. Model, behavioral task, and neural representation of a DV that explains confidence. (A) Depiction of bounded accumulation
model (i.e., one-dimensional drift-diffusion) in which momentary evidence is drawn from a normal distribution with mean (m)
proportional to motion strength (coherence, C). Three example trials are shown (colored traces). Decision formation terminates
when the stimulus is turned off (green and blue trials) or when the accumulated evidence reaches an upper or lower decision bound
(red trial). (B) The model assumes the brain has implicit knowledge of the probability of being correct, plotted as the logarithm of the
posterior odds (color), as a function of accumulated evidence and decision time. Black contours indicate a criterion on log-odds that
partitions the space into low- and high-confidence regions. (C ) Postdecision wagering (PDW) task (see text). Circle in left panel
represents the random-dot motion stimulus. Red spots indicate direction targets, one of which was aligned with the response field (RF,
gray region) of a neuron in area LIP. Blue spot is the “sure-bet” target (Ts). (A–C, Reproduced from Fetsch et al. 2014, with permission
from Elsevier.) (D) LIP responses predict direction choices and PDW. Solid black and gray traces show averaged activity for trials
ending in a saccadic choice into (Tin) or out of (Tout) the RF, respectively. Dashed traces represent trials in which Ts was chosen (black
and gray, motion toward Tin or Tout, respectively). Figure shows only the random half of trials in which Ts was presented during the
delay period. The monkey did not know whether the Ts option would be available until this time. (D, Reproduced from Kiani and
Shadlen 2009, with permission from AAAS.)
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furnished by a number of innovative studies in compara-

tive psychology (for reviews, see Hampton 2009; Smith

2009; Terrace and Son 2009; Kepecs and Mainen 2012).

Inspired by these advances in behavioral methodology,

Kiani and Shadlen (2009) trained monkeys to report their

confidence in a decision about the direction of visual mo-

tion (left or right) using a form of a postdecision wagering

(PDW). Following the perceptual decision phase, on a

random half of trials, the monkeys were allowed to refrain

from reporting the direction choice and instead select a

“sure bet” target (Ts; Fig. 2C). Choosing the sure bet yield-

ed a guaranteed reward but one that was smaller than for a

correct direction choice. The monkey could not predict

whether he would have the opportunity to choose Ts until

well after the visual stimulus was turned off. Indeed,

the task was explicitly designed so that the monkey had

to form a binary decision about the motion on each

trial, even if on a particular trial they might have hoped

that Ts would be shown. Crucially, the monkey’s accuracy

was greater on trials when the sure bet was offered but

waived compared with when it was not offered. The im-

provement in accuracy held within each level of difficulty

and for a subset of trials with identical motion stimuli

(Kiani and Shadlen 2009). This strongly suggests that

the decision to opt out was based on an assessment of

the reliability of internal sensory evidence, not simply a

classification of trial difficulty or the presence of lapses of

attention.6

If the DV that underlies the choice also governs confi-

dence, then a putative neural representation of the DV

should predict postdecision wagering behavior. This

was found to be the case. To appreciate the result, recall

that LIP neurons represent the accumulated evidence fa-

voring the saccadic choice target in their response field

(RF). This activity ramps upward preceding choices into

the RF and decreases or remains flat preceding choices

out of the RF. Prior to sure-bet choices (Kiani and Shad-

len 2009), the firing rates were intermediate (Fig. 2D),

analogous to the intermediate levels of evidence associ-

ated with lower confidence in the model (Fig. 2B). This

trend remained after accounting for stimulus difficulty

(motion strength and viewing duration) and was apparent

in both the rate of rise of activity during motion viewing

and the sustained level of activity during the delay period

before the sure-bet target was presented. In control exper-

iments with the eventual sure-bet target location aligned

with the RF, firing rates did not deviate from baseline

during the stimulus or delay periods, regardless of trial

outcome. In other words, the neurons also did not behave

as though it were a three-choice task, suggesting that the

intermediate activity was truly a signature of lower con-

fidence in the binary perceptual decision.

A CAUSAL TEST OF THE THEORY

These findings wereconsistentwith the hypothesis thata

common mechanism of bounded evidence accumulation

underlies all three pillars of choice behavior in decision

theory: choice (i.e., accuracy), decision time, and con-

fidence. Conveniently, our understanding of the neural

representation of sensory evidence in the motion discrim-

ination task allowed a powerful causal test of the hypoth-

esis. The momentary evidence for this task is known to

reside in motion-sensitive regions of extrastriate visual

cortex, especially the middle temporal (MT) and medial

superior temporal (MST) areas. Electrical microstimula-

tion (mS) of MT/MST biases monkeys’ choices (Salzman

et al. 1990; Celebrini and Newsome 1995) and RTs (Dit-

terich et al. 2003) in a manner consistent with a change in

the strength of momentary evidence (Fig. 3A). Based on

these studies, we reasoned that mS combined with PDW

would provide a sensitive test of the idea that confidence

arises from the same neural mechanism as choice and RT.

Monkeys performed the direction discrimination task

with PDW as in the previous study (Kiani and Shadlen

2009), but during motion viewing, on half the trials, we

applied mS to a cluster of neurons selective for one of the

two alternatives. As previously shown (Salzman et al.

1990, 1992; Celebrini and Newsome 1995), mS caused

the monkey to choose the preferred direction of the stim-

ulated neurons more frequently, manifesting as a horizon-

tal shift of the choice function (Fig. 3B). The key finding

was that mS altered confidence in a similar way, mimick-

ing a change in the visual motion itself (Fetsch et al.

2014). Specifically, the bell-shaped function relating

the proportion of sure-bet choices to motion strength

(Fig. 3D) shifted along the motion axis in a similar fash-

ion as the choice function, and the effects on choice and

confidence were well-correlated across sessions (Fig.

3C). Moreover, mS did not prevent the improvement in

sensitivity when the sure bet was offered but waived (Fig.

3B). This implies that the brain’s ability to assess the

reliability of evidence and opt out accordingly was not

disrupted, despite the artificial pattern of activity induced

by microstimulation. In terms of the model, this means

mS did not alter the internal mapping between accumu-

lated evidence and confidence (Fig. 2B), nor the criteria

applied to that mapping for opting out.

Taken together with previous work (Salzman et al.

1990; Ditterich et al. 2003; Hanks et al. 2006), this study

provides a quantitative, causal link between the activity of

neurons in visual cortex and the three core behavioral

indices in decision-making. The results support the idea

that integration of noisy sensory signals gives rise to a

common quantity that underlies choice, decision time,

and confidence. That one can perturb all three is not

surprising, but it is remarkable that the perturbation can

be quantitatively reconciled such that the amount of chan-

ge in choice is commensurate with specific changes in

PDW (Fetsch et al. 2014) and RT (Ditterich et al. 2003;

Hanks et al. 2006). Because mS alters neural activity

in a manner that is unlike natural vision, one might

have expected it to generate an anomalous experience

6Despite these reassurances, the task has a drawback that choice and
confidence are not overtly reported on the same trials. This was rectified
in subsequent experiments in humans (Kiani et al. 2014a; see below) and
monkeys (Kiani et al. 2011). For discussions of the pros and cons of
different methods for assessing confidence and metacognition in ani-
mals, see Smith et al. (2012), Kepecs and Mainen (2012), Hampton
(2009), Middlebrooks and Sommer (2011), and Terrace and Son (2009).
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leading to a net decrease in confidence. It is also conceiv-

able that, having been compelled to choose the preferred

direction of the stimulated neurons more often, the mon-

key would have experienced an unusually high degree

of confidence in those choices. Instead, the model—

which implements mS essentially as an offset to motion

strength—was able to predict the shift of the choice func-

tion and the degree of improvement on waived-sure-bet

trials (Fig. 3B, red curves) based on a fit to the remaining

observations.

One may notice in Figure 3D that the sure-bet curve

on mS trials (red) is not a translated replica of the no-mS

curve (blue). There is a slight decrease in the probability

of a sure-bet choice, most prominently at the weaker

motion strengths, indicating an increase in confidence

with mS. The most plausible explanation for this feature

of the data is a counterintuitive one: It suggests mS adds

a small amount of noise to the sensory representation. Of

course an increase in noise should reduce the animal’s

accuracy (sensitivity), and indeed this is consistent with

the subtle flattening7 of the choice function in Figure 3B

(red vs. blue solid curves). But why should this cause an

increase in confidence? In the context of evidence accu-

mulation, increasing the variability of momentary evi-

dence leads the DV to “diffuse” further away from the

starting point, which in our model (Fig. 2B) implies

greater confidence and fewer sure-bet choices. Notably,

this explanation requires that the brain does not “know”

that the variance of the evidence has changed: It applies

the same mapping to the accumulated evidence on

all trials, hence greater confidence with mS despite

lower sensitivity. This paradoxical result is also predicted

Figure 3. MT/MST microstimulation (mS) affects confidence in a manner similar to a change in visual motion. (A) (Top) Illustration
of experimental approach (Salzman et al. 1990) that exploits the columnar architecture of MT to inject a relatively pure directional
signal (in this case, rightward). Red and blue curves show schematically the proportion of rightward choices by the monkey as a
function of motion strength (percent coherence; positive ¼ rightward), for mS and no-mS trials, respectively. Electrical mS in this
example causes the monkey to choose rightward more often (upward arrows). The effect on choice and RT (Ditterich et al. 2003, not
shown) mimics a horizontal shift along the motion strength axis (dashed arrow). (B) Proportion of preferred-direction choices as a
function of motion strength (positive coh ¼ preferred direction of neurons at the stimulation site) for 63 sessions in two monkeys
(Fetsch et al. 2014), plotted separately for the four conditions of the 2 � 2 design: mS present (red) or absent (blue), and with (solid) or
without (dashed) the sure bet available. (C ) Magnitude of mS effects on choice and confidence (horizontal “shifts”)—plotted
separately for stimulation sites in area MT (green) and MST (blue)—were correlated across sessions (r ¼ 0.87). Error bars represent
SE of the fitted parameters quantifying the shift. (D) Proportion of sure bet (Ts) choices as a function of motion strength for all sessions.
Smooth curves in B and D represent fits/predictions of the bounded evidence-accumulation model (see text). (B–D, Reproduced from
Fetsch et al. 2014, with permission from Elsevier.)

7This effect is not obvious by eye but is statistically reliable. A similar
flattening was observed by Salzman et al. (1992), an effect they attrib-
uted to the spread of stimulation current to neighboring columns with
different preferred directions of motion. Although they referred to this as
adding noise, it is better construed as a reduction of the signal strength.
This phenomenon may have accounted for part of the decrease in sensi-
tivity we observed, but not the effect on confidence, which suggests an
increase in noise itself.
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by SDT-based models and at least one predecessor (Cart-

wright and Festinger 1943; Vickers 1979), and similar

observations have been made in human subjects under-

going transcranial magnetic stimulation (Rahnev et al.

2012). We are currently exploring this phenomenon

further by measuring MT/MST activity and PDW behav-

ior in response to a visual manipulation designed to mimic

the effect of adding noise to the DV (Zylberberg et al.

2014).

ELAPSED DECISION TIME INFORMS

THE SENSE OF CONFIDENCE

The success of the modeling exercise in the micro-

stimulation study (Fetsch et al. 2014) and earlier LIP

recording study (Kiani and Shadlen 2009) was due to a

critical feature of the model: The mapping between evi-

dence and degree of belief depends on elapsed deliber-

ation time. The time dependence comes from the mixture

of motion strengths in the experiment: The subject does

not know the reliability of evidence a priori, and so the

passage of time itself becomes indicative of weaker evi-

dence. However, owing to a lack of RT measurements in

these studies, a more direct test of the role of time was

warranted.

Kiani et al. (2014a), therefore, conducted a psycho-

physical experiment in which all three components of

the decision were measured simultaneously. In this study,

human subjects performed a direction discrimination task

and could report their decision (up or down) as soon as

they were ready. They did so with an upward or down-

ward eye movement, but were instructed to vary the hor-

izontal position of their saccadic end point based on how

confident they felt in the decision. The pattern of saccadic

end points indicated that, for all six subjects, motion

strength and RT had independent leverage on confidence

ratings (Fig. 4A). Because these three measures are cor-

related with accuracy and with each other, establishing an

independent role for time required a stimulus manipula-

tion that could prolong the decision without affecting

accuracy. This was achieved by presenting a reversal of

the animation sequence, which effectively undid evi-

dence that had been supplied in the preceding �160

msec. The manipulation had the effect of prolonging

the decision without a significant change in accuracy,

and on those trials the subjects reported lower confidence

(Fig. 4B). The result suggests that the brain uses elapsed

time as a source of information about signal reliability,

even when controlling for the amount of accumulated

evidence (Kiani et al. 2014a).

Explaining these findings required a more complicated

model than the one-dimensional bounded accumulation

process depicted in Figure 2A. This is because for a single

accumulator with symmetric bounds, decisions are al-

ways terminated at a particular level of evidence, leaving

nothing to covary with accuracy (and confidence) except

RT. For example, if the bounds were flat (i.e., stationary

as a function of time) the only possible arbiter of confi-

dence would be decision time. Confidence would not

depend on motion strength,8 but this is not supported

by the data. A solution (which happens to be more

biologically plausible) is to posit separate accumulators

for different options—a race between two diffusion pro-

cesses (Fig. 4C; Mazurek et al. 2003; Churchland et al.

2008; Niwa and Ditterich 2008)—and a calculation of

certainty based on the status of the losing accumulator

(Fig. 4D). Intuitively, if the race between accumulators

was a close call, it means the net evidence supporting

the chosen option was weak and we should be less con-

fident. In some ways the model resembles Vickers’ BE

hypothesis (Fig. 1C), except that negative increments

are allowed, and the races are anticorrelated, because

stimulus evidence for left is negative evidence for right.

The degree of this anticorrelation effectively determines

the degree to which time and motion strength account for

confidence.

A critical feature of this study (Kiani et al. 2014a) was

the simultaneous report of choice and confidence by a

single ballistic (saccadic) eye movement, ensuring that

both were guided by the same information. In this case

the model predicts—and the data show—that confidence

is an increasing function of evidence strength on both

correct and error trials (Fig. 4E; Kiani et al. 2014a).

This contradicts a key prediction of SDT-based models,

that confidence on error trials should decrease with evi-

dence strength or discriminability (Fig. 5A,B). The logic

of the SDT prediction is that for strong stimuli the distri-

butions representing the two alternatives are only slightly

overlapping, such that any error must have arisen from an

observation very close to the criterion, hence with low

confidence (see also Vickers et al. 1985). We think this

pattern has been oversold as a defining feature of con-

fidence and its neural correlates (Insabato et al. 2010;

Rolls et al. 2010; Komura et al. 2013). Consider that

most experiments solicit a confidence judgment after

the decision has been reported (Baranski and Petrusic

1998), allowing information “in the pipeline” to contrib-

ute to confidence but not the choice (Pleskac and Buse-

meyer 2010). The use of such information has been

demonstrated in the study of changes of mind (Fig. 6A;

Rabbitt 1966; Resulaj et al. 2009; Song and Nakayama

2009; Kiani et al. 2014b). This would allow the rare error

associated with an easy stimulus to undergo correction,

leading to low confidence on errors with stronger stimuli.

In fact, we can reproduce the pattern predicted by SDT

in a simple simulation of bounded accumulation in which

the DV is allowed to continue evolving and affect con-

fidence after the decision bound is reached (Fig. 6B).

Thus, the superficial similarity between SDT and some

publised experimental results does not indicate validity

of SDT-based models over SA-based alternatives. When

confidence and choice are reported at different times,

such results must be interpreted with caution to avoid

incorrect conclusions about the computation of certainty

and its neural mechanisms.

8This prediction is surprisingly robust even if the bounds collapse over
time, which they do, typically.
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CONCLUSIONS AND FUTURE DIRECTIONS

It seems neuroscience may soon be in a position to help

resolve decades of debate in mathematical psychology

about the mechanism of confidence judgments. This

optimism should be tempered somewhat by the reality

that the brain is flexible enough to use different mecha-

nisms depending on context or past experience. Never-

theless, a few core principles are emerging that should

help frame the discussion and guide future investigations.

From our perspective, these principles include the use of

time as a proxy for evidence reliability (see also Hanks

et al. 2011) and the idea that a common neural mechanism

may be responsible for choice, RT, and confidence.

Some key unanswered questions remain. We think con-

fidence involves the conversion of a DV to degree of

belief based on both the magnitude of the DV and de-

liberation time. But how does this happen? Along with

accumulated evidence, neurons in LIP represent informa-

tion about elapsed time (Leon and Shadlen 2003; Janssen

and Shadlen 2005; Maimon and Assad 2006) and thus

could participate in computations involving both quanti-

ties. On the other hand, temporal signals related to urgen-

cy (Churchland et al. 2008; Cisek et al. 2009) or dynamic

Figure 4. Confidence is informed by evidence and decision time. (A) Across-subject average (N ¼ 6) of saccade end points, a
psychophysical report of confidence, plotted as a function of RT and color-coded by motion strength. Positive end points indicate
greater confidence. (B) Average saccade end point on trials with (gray) and without (white) a “reverse pulse” that increased RT without
a significant change in accuracy (not shown). Error bars represent SEM. (C ) In an extension of the model in Figure 2A, two
accumulators compete by integrating noisy momentary evidence in favor of the two choices. The accumulator that first reaches the
absorbing bound dictates the choice and decision time. (D) Confidence in the model is governed by the status of the losing accumu-
lator, which at any given time is associated with a particular log-odds of being correct (color). Each level of evidence is associated with
less confidence as time elapses. (E) Theoretical predictions (top row) and model fits (bottom row) of the confidence, or certainty,
for three representative subjects, plotted as a function of motion strength and separated by trial outcome (correct vs. error). Model
parameters were first estimated by fitting each subject’s RT distributions irrespective of choice and confidence, and then used to
predict the general form of the certainty functions and to fit their observed saccade end points. (Reproduced with permission from
Kiani et al. 2014a.)
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bias (Hanks et al. 2011) may need to be discounted or

subtracted at later stages in order to recover the true level

of evidence that informs confidence. Moreover, LIP rep-

resents a DV for decisions about where to move the eyes,

but for other effectors or types of decisions, the readout

mechanism that establishes a sense of confidence must be

targeted elsewhere.

Interestingly, our microstimulation results (Fetsch et al.

2014) suggest there is at least one signal that is not sub-

tracted prior to establishing a level of certainty. When

we cause monkeys to choose the preferred direction of

the stimulated neurons more frequently, they adopt a

compensatory “null choice” bias to respond in the oppo-

site direction (Fig. 5B, lower; Salzman et al. 1992). This

is believed to reflect a stubborn prior: The brain does

not adjust its expectation that the two choice targets

are equally likely to be rewarded. Thus, when faced

with a preponderance of, say, rightward choices induced

by mS, it adds a leftward bias so that the proportion of

each choice remains �50%. The compensatory bias may

therefore be akin to a bias induced by asymmetry in re-

ward expectation (Feng et al. 2009). For example, on

trials without mS in which the monkey viewed 0% coher-

ent motion, he tended to choose the null direction (Fig.

Figure 5. Confidence as the distance from criterion in
signal-detection theory (SDT). (A) The overlapping
Gaussians represent probability distributions of a noisy
observation under two competing hypotheses (i.e., a left-
ward or rightward stimulus was present). The panels
depict different levels of discriminability defined by the
difference in means of the distributions in units of their
standard deviation (d0). An observation to the right of the
decision criterion (dashed line) will be correct if arising
from the rightward distribution (green) or will be an error
if from the leftward distribution (blue). Confidence in
these choices could be computed as the distance from
the criterion, the means of which are shown by the in-
verted triangles. Depiction is consistent with a hypothet-
ical two-interval task, but the same logic applies in the
single-interval case. (B) The average distance from crite-
rion increases with discriminability for correct choices
(green), but decreases for errors (blue). (See also Fig.
8g in Kim and Shadlem [1999].)

Figure 6. Confidence on errors could in some cases be explained by a process akin to change-of-mind. (A) Depiction of a hypothetical
“rightward” trial. Because of noise, the accumulated evidence first reaches the bound signaling “left,” and movement is initiated
toward the wrong choice target. However, evidence in the processing pipeline continues to accrue favoring rightward, and if the
decision is reported with a nonballistic movement (i.e., a reach of the arm), this additional evidence can cause a revision of the initial
movement trajectory toward the correct choice. (B) If the initial choice in A is not revised, but the experiment solicits a confidence
report following the choice, the extra evidence in the pipeline would lead to lower confidence on errors when evidence is strong, as
observed in some experiments and asserted as a signature of confidence within an SDT framework. The graph (compare with Fig. 5B)
shows results of a simulated one-dimensional bounded accumulation process where evidence was allowed to accumulate for 250 msec
after bound crossing. Symbols show average log-odds associated with the final level of evidence as a function of motion strength on
correct trials (green) and errors (blue). (A, Modified, with permission, from Resulaj et al. 2009.)
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3B, blue curves shifted to the right), yet we do not believe

he perceives motion in this direction. He is simply biased.

It turns out this bias is also reflected in PDW: the monkey

opts out most frequently for stimuli supporting an equal

probability of choosing either direction (Fig. 3D, blue

curve shifted to the right). In terms of the model, this

says that the mapping (Fig. 2B) does not shift to account

for the bias, just as it does not shift in response to mS.

Thus, a distinction to keep in mind is whether a be-

havioral assay measures confidence about the state of

the world (is the motion leftward?) or about whether

the decision is appropriate (should I choose leftward?).

PDW can indicate confidence in the state of the world

only to the extent that subjects’ expectations reflect it. For

most of our experiments the connection is tight, but there

are many ways it can be loosened.

Beyond this distinction, other forms of confidence are

involved in foraging (Hayden et al. 2011), monitoring

performance and conflict (Stuphorn et al. 2000; Botvi-

nick et al. 2001; Ito et al. 2003), and ranking unchosen

options (Hayden et al. 2009; Rushworth et al. 2012).

These processes may involve neural representations of

confidence-like quantities that are disentangled from

the decision process (Lak et al. 2014) and therefore inde-

pendent of modality and effector. We emphasize that

the mechanism we propose for computing confidence

in a perceptual decision is not incompatible with such

a task-independent representation (de Gardelle and

Mamassian 2014; Heereman and Heekeren 2014). Rather

our experiments point toward a stage of processing in

which certainty emerges directly from a decision pro-

cess—consisting of operations on evidence and (in

many cases) elapsed time—which may then support elab-

oration to a broader array of cognitive functions such as

those listed above. Exactly where and how these and other

forms of (un)certainty (e.g., Bromberg-Martin and Hiko-

saka 2011; Monosov and Hikosaka 2013) are transformed

and combined in the brain will be an area of great future

interest for experimenters.

José Saramago once wrote that “strictly speaking, we

do not make decisions, decisions make us.” Indeed, one

might say that it is through our decisions that we differ-

entiate ourselves as moral agents (Kane 2002), and it

is through this window that neuroscience illuminates

the philosopher’s study of ethics (Shadlen and Roskies

2012). More generally, we feel that decision-making of-

fers a window on the neurobiological underpinnings of a

variety of aspects of cognition that have little to do with

decision-making. In particular, in the study of confidence

we encounter the topic of metacognition. When the mon-

key chooses or waives the sure bet, it is now indicating

something about the decision process—something be-

yond the choice itself. One might be tempted to dismiss

the metacognitive designation in light of the nuts-and-

bolts account of the process emerging from our experi-

ments. We would regard that as mistaken, however, for

explaining a phenomenon, especially in cognitive neuro-

science, is not explaining that phenomenon away. Just as

vision arises via neural mechanisms, so too do many of

our treasured cognitive functions.

Turning to vision itself, it is tempting to ask if the

monkeys experience electrical microstimulation as vi-

sion. Pioneers of this experimental approach (Salzman

et al. 1992; Romo et al. 1998) speculated that the sub-

jective experience during mS resembles that of natural

sensory input, an intriguing proposal given that the ma-

nipulation directly affects only a small portion of the

circuit and does so in an artificial manner. In our exper-

iment (Fetsch et al. 2014), this question is really whether

the experience of mS plus random-dot motion is like see-

ing another random-dot stimulus (e.g., one that appears

more “rightward”-ish). We would like to ask a monkey

what it feels like on the trials withmS. When we displayed

a stimulus with no net motion accompanied by mS of

rightward-preferring neurons, did this feel like seeing

motion to the right? We cannot pose these questions to

a monkey, but the PDW paradigm might come as close as

possible. Consider that the monkeys had an opportunity to

use the sure bet to tell us something is peculiar on stim-

ulation trials. They did not do that, yet we know that they

will indicate a decrease in confidence if we increase the

current (Fetsch et al. 2014). More importantly, mS does

not appear to affect the way that the brain consults the

mapping of DV (and elapsed time) to render a metacog-

nitive decision to choose or forgo the sure bet. This is a

strong test of what it means to experience visual motion

plus artificial mS as equivalent to visual motion plus a

variant of visual motion. It does not rise to the subjective,

personal aspect of “feels like,” but it comes close.
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