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SUMMARY

‘‘Degree of certainty’’ refers to the subjective belief,
prior to feedback, that a decision is correct. A reliable
estimate of certainty is essential for prediction,
learning frommistakes, and planning subsequent ac-
tions when outcomes are not immediate. It is ge-
nerally thought that certainty is informed by a neural
representation of evidence at the time of a decision.
Here we show that certainty is also informed by the
time taken to form the decision. Human subjects re-
ported simultaneously their choice and confidence
about the direction of a noisy display of moving
dots. Certainty was inversely correlated with reaction
times and directly correlated with motion strength.
Moreover, these correlations were preserved even
for error responses, a finding that contradicts exist-
ing explanations of certainty based on signal de-
tection theory. We also contrived a stimulus mani-
pulation that led to longer decision times without
affecting choice accuracy, thus demonstrating that
deliberation time itself informs the estimate of cer-
tainty. We suggest that elapsed decision time in-
forms certainty because it serves as a proxy for
task difficulty.

INTRODUCTION

Decisions are usually accompanied by a degree of certainty or

confidence, which reflects a graded belief about the likelihood

of different outcomes. Choice certainty plays at least two

important roles. It facilitates adaptive regulation of behavior

by furnishing a basis for learning from outcome (Dayan and

Daw, 2008; Vickers, 1979), and it supports decision-making in

complex environments where subsequent decisions depend

on the predicted outcome of recent decisions before the actual

consequences are known. For example, we tend to learn more

from an erroneous decision about which we were more confi-

dent, and we tend to make conservative decisions if they

depend on recent decisions whose outcomes are less certain

(Kiani and Shadlen, 2009; Middlebrooks and Sommer, 2012).
Ne
How does a decision-maker establish a degree of certainty?

There are two potential sources of information. The first is rooted

in the evidence; the second is associated with decision time.

Because the state of the evidence contributes to choice accu-

racy, it seems likely that it might also bear on choice certainty.

According to signal-detection theory (SDT), a choice is deter-

mined via comparison of a decision variable (DV)—a function

of the evidence—to a criterion. It follows that the distance be-

tween the DV and criterionmight underlie a judgment of certainty

(Balakrishnan and Ratcliff, 1996; Ferrell, 1995; Kepecs et al.,

2008; Treisman and Faulkner, 1984; Wallsten and Gonzalez-Val-

lejo, 1994). When the evidence strongly supports a choice, this

distance is larger and the certainty is greater. Indeed, under a

natural set of transformations, this distance is proportional to

the log of a probability or likelihood ratio (Gold and Shadlen,

2001). Thus, SDT and more sophisticated Bayesian classifica-

tion schemes (Deneve et al., 2001; Jazayeri and Movshon,

2006; Ma et al., 2006; Zemel et al., 1998) provide a natural

connection between choice and certainty since both depend

on the probability that a decision is the correct one, based on

the evidence.

However, SDT is inherently incapable of explaining systematic

variations in the decision time (Baranski and Petrusic, 1994,

1998; Link, 1992; Ratcliff and Starns, 2009; Vickers and Smith,

1985). On the other hand, a variety of mechanisms resembling

bounded evidence accumulation—diffusion, random walk,

race, and attractor models—produce highly successful ac-

counts of both choice and reaction time (RT) for a multitude of

perceptual and cognitive decisions (Beck et al., 2008; Church-

land et al., 2008; Cisek, 2006; Donkin et al., 2011; Link and

Heath, 1975; Purcell et al., 2010; Ratcliff and Starns, 2013; Reddi

et al., 2003; Smith, 1988; Usher and McClelland, 2001; Vickers,

1979). This framework explains the relationship between speed

and accuracy and is supported by neural recordings in the mon-

key (Bollimunta and Ditterich, 2012; Cook and Maunsell, 2002;

Gold and Shadlen, 2007; Purcell et al., 2010; Ratcliff et al.,

2007). The coupling between decision accuracy and decision

time suggests that the latter might inform a judgment of cer-

tainty. Longer decision times are often associated with weaker

sensory evidence and higher error rates. Thus, the brain may

learn, by association, to use decision time or some function of

it as a proxy for stimulus strength and certainty judgment.

The majority of theoretical accounts of choice certainty have

ignored the temporal dynamics of the decision-making process.
uron 84, 1329–1342, December 17, 2014 ª2014 Elsevier Inc. 1329
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Like SDT, most bounded accumulation models attribute cer-

tainty to the state of the evidence at the time of decision (Beck

et al., 2008; Petrusic and Cloutier, 1992; Van Zandt and Maldo-

nado-Molina, 2004; Vickers, 1979; cf. Audley, 1960; Juslin and

Olsson, 1997). To account for confidence, evidence must be

accumulated by at least two competing mechanisms, because

a scalar DV that terminates the decision at a criterion level cannot

provide a graded representation of the evidence. Thus, choice

certainty is thought to be based on the magnitude of evidence

accumulated by the competing accumulators that do not reach

the threshold and represent the losing alternatives (e.g., Beck

et al., 2008; Pleskac and Busemeyer, 2010; Van Zandt and Mal-

donado-Molina, 2004; Vickers, 1979). These models predict a

spurious correlation between certainty and RT, which is merely

a reflection of an underlying correlation between stimulus diffi-

culty (or accuracy) and RT. Accordingly, deliberation time itself

is generally believed not to play a role in the computation of

certainty.

For a large class of bounded accumulation models, the rela-

tionship between the DV and accuracy is time dependent. That

is, the same amount of accumulated evidence for a particular

choice, but at different times, would be associated with different

likelihoods that the choice is correct (Kiani and Shadlen, 2009).

Therefore, a calculation of certainty based solely on the magni-

tude of a DV is suboptimal and can be adjusted by taking the

passage of time into account. We hypothesized that both deci-

sion time and the state of the evidence leading to a choice affect

subjective certainty, or confidence. Testing this hypothesis is not

straightforward because decision time is usually affected by the

evidence supporting a choice. Here, we disentangle the DV from

decision time and show that certainty can be influenced by

changes of decision time in the absence of a change in the DV

and accuracy.

RESULTS

Participants were asked to decide the direction of motion (up or

down) in a dynamic, random-dot motion display. The strength of

the motion varied randomly from trial to trial, and viewing dura-

tion was controlled by the subject. Whenever ready, the subject

made a single saccadic eye movement to indicate both the di-

rection choice and the degree of confidence that the choice

was correct (Figure 1B). The two choice-targets, corresponding

to up and down, were shaped as rectangles, allowing subjects

to indicate their certainty on a scale of uncertain to certain

(left to right). Since saccadic eye movements are ballistic, the

method ensures simultaneous reports of direction choice and

its certainty.

In the direction discrimination task, stronger motion led to

improved accuracy and faster RTs (Figure 1C), as previously

shown (Churchland et al., 2008; Ditterich et al., 2003; Huk and

Shadlen, 2005; Palmer et al., 2005; Roitman and Shadlen,

2002). The relationship between choice and RT is explained by

a bounded accumulation model (see Experimental Procedures).

The curves in Figure 1C are predictions of amodel that was fit us-

ing only the observed distribution of RTs, irrespective of choice

(Figure S1). The predictive power of this model is remarkable,

but the important point for our purpose is that the relationship
1330 Neuron 84, 1329–1342, December 17, 2014 ª2014 Elsevier Inc
between RT and probability correct is so strong that the ex-

pected accuracy can be predicted based only on RTs. We hy-

pothesized that the brain might therefore exploit this relationship

for certainty judgments.

The measure of certainty was the horizontal endpoint of the

subject’s saccade. Of course, we cannot know how a subject

maps an estimate of the probability she will be correct into a hor-

izontal position along the target. We assume only that the expec-

tations of these horizontal positions are monotonically related to

confidence. Indeed, Figure 2A is consistent with this assump-

tion. For correct responses, saccadic endpoints along the hori-

zontal dimension were monotonically related to motion strength

(p < 10�8 for all subjects) (Balakrishnan and Ratcliff, 1996; Green

and Swets, 1966; Vickers, 1979). The more important observa-

tion is the inverse relationship with RT. This is evident by the

downward trend of the traces in Figure 2A (Equation 4, p <

10�8 for all subjects). The effects of both coherence and RT

were seen in all six observers, albeit to different degrees. The ef-

fect of motion strength is masked for subjects 1 and 4 because

these subjects utilized a limited range of saccade endpoints.

However, zooming in clarifies both effects (Figure S2). Overall,

neither the effect of RTs nor the effects of motion strength could

be described by the other one. That is, for a fixed RT, trials with

lower stimulus strength had lower choice certainty, and for a

fixed stimulus strength, trials with longer RTs had lower choice

certainty.

Due to the stochastic nature of the random dot stimulus, the

experienced strength of motion fluctuates from trial to trial

even for the same motion coherence. We performed two control

analyses to test whether random variations of the stimulus

strength could explain away the relationship of RT with certainty.

First, on a subset of trials we showed an identical sequence of

random dot motion to the subjects. These trials replicated the

independent effects of reaction time andmotion strength on cer-

tainty (p < 10�8 for RT and p < 10�5 for motion coherence; see

Experimental Procedures and Figure S3). Second, we quantified

trial-to-trial fluctuations of stimulus strength by calculating mo-

tion energy for trials in which the motion sequence was not fixed

(see Experimental Procedures). Subjects’ certainty increased

with the average motion energy (Figure 3; Equation 9, p < 10�4

for all subjects) or the integral of motion energy (Figure S4; Equa-

tion 9, p < 10�8 for all subjects) on each trial. However, for each

motion energy, certainty remained inversely correlated with RT

(Equation 9, p < 10�8 for all subjects, both for the average and

the integral of motion energy), suggesting that the relationship

between certainty and RT was not due solely to random varia-

tions of motion strength for each coherence.

The inverse relationship between choice certainty and RT was

also evident when subjects made errors (Figure 2B). Compared

to correct responses, RTs were longer for error responses (t

test, p < 10�6, 13%–65% increase across subjects), and the

error certainties were smaller accordingly (p < 0.002) (Petrusic

and Cloutier, 1992; Pierrel and Murray, 1963; Vickers and Smith,

1985). Importantly, among the error responses themselves, sub-

jects were more confident about faster errors (Equation 4, p <

10�4). Indeed, for 5 of 6 subjects, the regression slopes of

saccadic endpoint versus RT were statistically indistinguishable

from the regression slopes for correct responses (Equation 5,
.
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Figure 1. Choice-Reaction Time Task with Simultaneous Report of Choice and Certainty

(A) Stimulus display. Observers reported the direction of dynamic random dot motion (up or down) and choice certainty by making a single saccadic eye

movement to one of the two bar-shaped targets. The landing point of the saccade along the target indicated the degree of certainty, which ranged from guessing

(red) to full confidence (green).

(B) Task sequence. After acquiring a fixation point, the two targets appeared on the screen, followed by the motion stimulus. The subject made a saccadic eye

movement when ready. The motion stimulus was extinguished when the observer initiated an eye movement.

(C) Probability correct and reaction time conformed to expectations of a bounded accumulation mechanism (see Experimental Procedures). Each column shows

data from one subject (S1–S6). Themodel was fit to the overall distribution of RTs. Then the parameters were used to predict the subject’s accuracy (gray curves,

upper panel) and the correct RTs (solid black curves, lower panel). Error bars are SEM.
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p > 0.3 for five subjects; for subject 2, p = 0.001). Finally, the cer-

tainty associated with errors was greater when subjects viewed

stronger motion (Figure 4; Equation 6, p < 0.05 for five subjects;

p = 0.002 for pooled data). This last observation is critical for es-

tablishing a close link between RT and certainty beyond that

implied by stimulus difficulty and accuracy, because it contra-

dicts predictions fromSDT andmany explanations of confidence

ratings based solely on the state of the DV that underlies the

choice, as we elaborate in Discussion.

The same bounded accumulation model that predicted sub-

jects’ accuracy based on their RT distributions also predicted

the increase of certainty with motion strength for both the cor-
Ne
rect and error trials. The key insight is that both the DV and

time convey information about certainty in the model. The model

consists of two competing accumulators, which integrate noisy

momentary evidence (Figure 5A). The noisy inputs of the two ac-

cumulators may not be perfectly correlated, thereby giving rise

to a pair of DVs that are not completely redundant (Figure 5B).

The accumulator that reaches its upper bound faster dictates

the choice and the decision time. Note that the winning accumu-

lator is not informative for the computation of certainty because

it is always at a bound at the time of the decision. However,

the losing accumulator can contribute to the certainty com-

putation (Vickers and Packer, 1982). The losing accumulator
uron 84, 1329–1342, December 17, 2014 ª2014 Elsevier Inc. 1331
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Figure 2. Certainty Varies as a Function of Both RT and Motion Strength

(A and B) Each column shows data from one subject (S1–S6). Certainty on correct choices is shown in (A). The horizontal position of the saccade endpoints are

grouped by motion strength and RT. Positive endpoints connote greater certainty. For 0% coherence all trials are included. RTs are grouped in quintiles for each

motion strength. Certainty on errors is shown in (B). Error bars are SEM.
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confers greater confidence the farther it is from the upper

bound. However, the mapping between the DV of the losing

accumulator and the probability that the response will be correct

varies with elapsed decision time (Figures 5C and 5D). For

example, an intermediate or low DV in the losing accumulator

for an early decision forecasts a higher likelihood of success

than later on.

We hypothesize that the brain can learn these associations

and use them for efficient computation of certainty. The smooth-

ness of changes of the log odds of success with time and the DV

(Figure 5D) supports the plausibility of this hypothesis. In partic-

ular, the associations have a low dimensional parameterization,

suggesting they can be learned from limited samples (i.e., ex-

perience). The model prediction for the subject’s expected

certainty for each motion strength can be formalized as the sub-

ject’s expected probability to respond correctly based on (1) the

learned association of accuracy with the DV and decision time,

(2) the predicted distribution of reaction times, and (3) the pre-

dicted distribution of the DV of the losing accumulator. The

expected certainty for each motion strength on correct and

incorrect trials is given by

bpðcorjC;RÞ= Z
t

pðtjC;RÞ
0
@Z

v

bpðcorj v!; tÞpð v!jt;C;RÞdv
1
Adt;

whereC is themotion strength, t is the decision time, andR is the

observed response from the experimenter’s perspective (correct

or error). bpðcorj v!; tÞ represents the learned association between

the experienced correct feedback and the decision time and DV.

Note that all components of the equation above can be readily

calculated with the model parameters obtained from the RT dis-

tributions (Figure 1C). Figure 5E shows these predictions. A com-

parison with Figure 4 reveals the model’s success in predicting
1332 Neuron 84, 1329–1342, December 17, 2014 ª2014 Elsevier Inc
the certainty. In fact, by assuming a monotonic relationship be-

tween the model’s predicted certainty and the landing points

of subjects’ saccades, we can provide a good fit to the observed

responses (Figure 5F).

A Causal Test of the Effect of Elapsed Time on the
Computation of Certainty
Our results suggest that certainty does not derive merely from

the state of the DV guiding the choice, but from some other

cue about difficulty. Based on the link between RT and certainty,

the additional source of information could be decision time or a

monotonic function thereof (e.g., rate of evidence accumulation).

However, decision time is closely linked to accuracy (Figure S5;

Equation 7, p < 0.0005). In principle, any factor that affects prob-

ability correct could affect certainty and thereby induce a

spurious relationship between certainty and RT. To establish

that certainty judgments are directly influenced by decision

time, we need to isolate changes of RT from probability correct

and demonstrate that even when probability correct remains

the same, subjects are less confident about late responses.

To achieve this, we developed a stimulus manipulation using

the following strategy. If a decision is based on accumulation

of evidence over time, it ought to be possible to prolong the de-

cision process by providing evidence that cancels previous evi-

dence (Figure 6). The random dot motion stimulus is ideal for this

purpose. The stimulus is inherently stochastic: even for a fixed

coherence level, the actual motion energy fluctuates over time

during a trial. This feature permits a stealthy modification of the

stimulus by introduction of specific sequences of motion,

tailored to cancel the evidence provided by an earlier portion

of motion stimulus. On half of the trials with 0% or 3.2% coher-

ence, we introduced a 160 ms long cancellation pulse by playing

in reverse order the motion frames immediately preceding the
.
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pulse (Figure 6A) (see Experimental Procedures). We limited the

reverse pulses to the weakest stimuli to keep subjects’ experi-

ences as close to normal as possible and thus prevent deliberate

changes of decision strategy. None of the subjects reported un-

expected changes of the stimulus in the debriefing after the

experiment. That is, stimulus fluctuations caused by the reverse

pulse were within the range of experienced fluctuations in other

trials. Through introduction of reverse pulse, we tried to return

the accumulated evidence to its value at a previous point in

time, thereby allowing the decision process to continue as if

the previous 360 ms achieved no net change in evidence favor-

ing either direction. The manipulation only approximates this

goal, but under reasonable assumptions, it ought to lead to no

net change in the probability correct.

Five subjects were tested in this experiment. As expected, the

reverse pulse led to increased RT (Figure 6B). The RT changes

varied across subjects, owing presumably to different ten-

dencies to censor long RTs (Churchland et al., 2008; Drugo-

witsch et al., 2012), but the size of the change was considerable

(222.6 ± 68.6 ms, mean ± SEM across subjects; ANOVA p <

0.005 for all subjects except subject 2; p < 10�8 for pooled

data from all subjects). Despite these longer RTs, the probability

correct for 3.2% coherence did not show an appreciable change

(Z test for proportions, p > 0.2 for each subject). It seems unlikely

that this is explained by lack of power because (1) the change

was also undetectable in pooled data from all subjects (p =

0.48; 1,395 trials, a change of accuracy as small as 0.045 would

yield p% 0.05) and (2) the probability correct for the 3.2% coher-

ence (74%–81%) is close to the midpoint of the psychometric

function, where it is steepest, permitting easy detection of a
Ne
stimulus-induced change. In other words, we optimized the

experiment as well as possible to detect small changes of

accuracy.

Although the reverse pulse failed to affect accuracy, it reduced

the subject’s confidence (Figure 7A; ANOVA, p < 0.05 for each

subject except subject 4; p = 10�7 for pooled data). The reduc-

tion of certainty wasmost pronounced for 3.2% coherence trials.

On 0% coherence trials, the reported certainty in the absence of

reverse pulse was already near the minimum of the range utilized

by each subject. Nonetheless, the effect was evident even for

the 0% coherence strength when the data were pooled across

subjects (p = 0.006, Wilcoxon rank-sum test). The reduction in

certainty is remarkable in light of the subtlety of the stimulus

manipulation—brief pulses applied only to the weakest stimuli.

Indeed, the manipulation resembled the stochastic variations

already present in the stimulus, which explains why they were

not apparent to subjects.

Although the changes in accuracy did not reach significance,

we worried that Figure 6 suggests a trend toward reduced accu-

racy. To explore whether this trend can account for the signifi-

cantly reduced confidence, we estimated the expected change

in saccadic landing position based on the monotonic relation-

ship between accuracy and certainty. In 4 of the 5 subjects,

the reverse pulse affected confidence to a greater degree than

one would anticipate from the empirical relationship between

accuracy and confidence (p < 0.05 for all subjects but subject

4; p < 10�4 for pooled data). Moreover, the reduction in certainty

was compatible with the increased RTs (Figure 7B). The slope of

the regression for certainty versus RT was unchanged (Equa-

tion 8, p > 0.3 for each subject; p = 0.25 for the pooled data).
uron 84, 1329–1342, December 17, 2014 ª2014 Elsevier Inc. 1333
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In other words, the reverse pulse reduced choice certainty by the

amount expected for the change of RT.

From this experiment we conclude that a variation of decision

time that is not associated with a change in accuracy is itself suf-

ficient to induce changes in confidence. On the other hand, the

first experiment indicates that decision time alone is insufficient

for explaining confidence. Together, these experiments show

that both elapsed decision time and the state of accumulated ev-

idence shape the sense of certainty. The bounded accumulation

model successfully formalizes this relationship.

DISCUSSION

Traditionally, quantitative studies of perception were based on

three behavioral measurements: accuracy, RT, and confidence

ratings. A longstanding goal seeks to relate these measures to

the underlying decision process. All three measures are affected

by stimulus strength or difficulty. Although accounting for the

exact quantitative relationships is nontrivial, it seems natural

that a low quality of evidence, defined by low signal-to-noise ratio

(SNR), would be associated with worse accuracy, slower res-

ponse times, and lower confidence ratings. Indeed, if certainty

is at all meaningful, it ought to reflect accuracy, on average,

even if imperfectly (Drugowitsch et al., 2014). This trend, which

is apparent in our experiment, reassures us that our subjects’ re-

ports of certainty were sensible.

Themain finding from our study is a critical role of elapsed time

on judgments of certainty. Psychologists have long known that

longer RT may be associated with lower confidence ratings

(Audley, 1960; Baranski and Petrusic, 1998; Henmon, 1911;

Johnson, 1939; Volkmann, 1934), but it is often assumed this as-

sociation merely reflects task difficulty and accuracy. Since de-

cision time is naturally correlated with both of these variables,

there has been little interest in the idea that time itself might

affect the sense of certainty. However, recent experiments using

postdecision wagering in nonhuman primates suggest that both

accumulated evidence and elapsed decision time are combined

to inform a sense of certainty in a decision (Fetsch et al., 2014;

Kiani and Shadlen, 2009). Postdecision wagering is an indirect

proxy for certainty, which cannot be ascertained directly in ani-

mals. The present study solicits a more direct ‘‘rating scale’’

measure of certainty from humans, and it exploits two task ma-

nipulations, which allowed us to deduce decision times on single
1334 Neuron 84, 1329–1342, December 17, 2014 ª2014 Elsevier Inc
trials and to dissociate decision time from accuracy. These ma-

nipulations are the simultaneous report of direction and confi-

dence and a stimulus modification that effectively adds time

but no information to the evidence.

We used a choice-reaction time paradigm to study a percep-

tual decision that is known to rest on the accumulation of

sequential samples of evidence in time. We confirmed that a

mechanism like bounded evidence accumulation accounts for

the speed and accuracy of subject’s decisions, consistent with

previous experiments in human and nonhuman primates. The re-

action times are short compared to cognitive decisions, but they

are long compared tomany perceptual categorizations, because

they require integration of evidence over time to achieve an

acceptable level of accuracy. The capacity to predict subjects’

accuracy from measurements of their RT (Figure 1C, gray

curves) is testimonial to the explanatory power of this model

framework. It indicates that we can deduce the decision time

of our subjects from their measured RT.

One of the novel task innovations ensured that subjects used

the same information to make their direction choice and confi-

dence rating (Ratcliff and Starns, 2013). Although the stimulus

motion is turned off at the moment the subject initiates their

eye movement response, we have shown elsewhere that the

brain does not utilize the final �0.3 s of stimulus information in

this choice. Since the additional information can be used to

revise an initial choice (Resulaj et al., 2009), we wished to sup-

press the possibility that subjects would base a confidence rat-

ing on this additional information. We achieved this by using a

single ballistic eye movement to indicate both choice and confi-

dence. In Supplemental Information (Figure S6), we show that a

serial report of choice followed by confidence replicates our

main findings. However, we suspect that this would not be the

case if we had tested decisions that use shorter temporal inte-

gration periods, for which a few extra tenths of seconds of infor-

mation might dissociate choice and confidence when they are

reported serially. Further, we expect that a serial report of choice

and confidencewould significantly reduce the utility of error trials

for inferring the mechanism of confidence (Figure 4) simply

because subjects could use the period between the choice

and confidence report to recalibrate their confidence or even

change their minds (Caspi et al., 2004; Kiani et al., 2014; Resulaj

et al., 2009). For example, serial reporting of choice and certainty

might weaken or even reverse the trend in Figure 4.
.
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All six subjects support our conclusion that certainty is shaped

by both decision time and the state of the evidence represented

by the losing accumulator. While both factors were required to

explain the data from each of the six subjects, some were

more affected by decision time than motion strength (e.g., sub-

ject 1; Figure 2A), whereas others were more affected by motion

strength (e.g., subject 2), hence the state of the losing accumu-

lator. In our model, this is captured mainly by the level of corre-

lated noise in the two DVs and also by the reflecting lower

bounds (Figure 5A). We expect the sign of correlation to be nega-

tive because some of the noise derives from the random dot

stimulus itself (Bollimunta and Ditterich, 2012). Were the two

DVs exact inverse replicas (i.e., correlation = �1), there would

be no information obtainable from the losing accumulator, leav-

ing decision time as the sole determinant of certainty. This

possibility is inconsistent with the data, although it is the usual

depiction of bounded evidence accumulation on a single graph

with symmetric choice bounds.

A single accumulator with two bounds (also known as ‘‘diffusion

model’’) has often been adopted for mathematical convenience,

not for its biological plausibility. Indeed, electrophysiological ex-

periments suggest an array of accumulators that compete with

each other (Beck et al., 2008; Bogacz et al., 2007; Bollimunta

and Ditterich, 2012; Churchland et al., 2008; Mazurek et al.,

2003; Usher et al., 2013). For binary choices, if one assumes per-

fect anticorrelation between two accumulators, two competing

accumulators may be depicted as a single accumulation toward

or away from upper and lower bounds. Such bounded accumula-

tion is sufficient to explain many aspects of choice and RT. How-

ever, it is insufficient to explain concurrent effects of accumulated

evidence and decision time on confidence, because this simple

modelwould imply incorrectly that the only information supporting

confidence is the decision time. An additional, partially inde-

pendent process is essential to explain the effect of accumulated

evidence. We assume that this is the losing race (Vickers and

Packer, 1982), but it could be any competing process. Thus, our

model is related to a variety of race models (e.g., Brown and

Heathcote, 2008; Donkin et al., 2011). Importantly, taking elapsed

time into account improves the computation of certainty in all

such models.

In our second experiment, we attempted to achieve the disso-

ciation of certainty and accuracy by reversing the accumulated

evidence—returning it to its state 160 ms ago. The strategy con-

tains an obvious flaw: the reverse pulse does not cancel the neu-

ral noise in the brain. Neural firing rates fluctuate randomly even

for a fixed stimulus (Britten et al., 1993; Schiller et al., 1976;

Shadlen and Newsome, 1998; Snowden et al., 1992; Tolhurst

et al., 1983; Vogels et al., 1989), and these random fluctuations

continue to accumulate during the reverse pulse, leading to a

larger dispersion of accumulated evidence. Even stimulus noise

is not perfectly canceled (e.g., adjacent frames are not reversed;

see Experimental Procedures). Our attempt, therefore, was only

approximate. Nonetheless, the lack of change in probability cor-

rect achieves the important goal: a change in RT without a

change in the probability correct. The latter is not explained by

a lack of statistical power. The probability correct (74%–81%)

coincides with the steepest part of the psychometric function

(Figures 1 and 6), where the likelihood of detection of a change
Ne
in accuracy ought to be maximal. Moreover, the change in

certainty cannot be explained by the small and insignificant

variations of accuracy, whereas it is fully compatible with the

increased RT (Figure 7). Overall, the reverse pulse experiment

suggests that manipulation of decision time itself is sufficient

to affect confidence.

How is a degree of certainty assigned on a single decision?

The probability of a correct decision is reflected in the proportion

of correct choices, but any one decision is either correct or not.

Standard decision theory furnishes an adequate account of how

such proportions arise based on simple considerations of signal

and noise (Britten et al., 1992; Green and Swets, 1966; Tolhurst

et al., 1983), but most are found wanting when attempting to ac-

count for the graded degree of certainty on a single trial. For

example, signal detection theory posits that a decision is based

on the comparison of a DV to a criterion, and the distance from

the criterion underlies certainty (Balakrishnan and Ratcliff,

1996; Ferrell, 1995; Kepecs et al., 2008; Treisman and Faulkner,

1984; Wallsten and Gonzalez-Vallejo, 1994). As the stimulus

strength increases, the DV distribution systematically shifts to

one side of the criterion. As a result, the mean of the DVs on

the ‘‘correct’’ side of the criterion increases, causing an increase

of certainty for correct responses with stronger stimuli. However,

themean of the DVs on thewrong side of the criterion decreases,

suggesting a reduction of error certainty with stimulus strength

(Kepecs et al., 2008; Kim and Shadlen, 1999). Therefore the rela-

tionship between difficulty and certainty should reverse on er-

rors. A similar prediction is made by the majority of accumulation

models that attribute certainty to only the DV (Ratcliff and Starns,

2013; Rolls et al., 2010; Vickers, 1979; Zylberberg et al., 2012).

This prediction is contradicted by our data (Figure 4; but see

the note above on the importance of simultaneous report of

choice and certainty). We wish to emphasize that our model

does not overturn SDT.We view sequential sampling as a natural

extension of SDT to explain the time taken to reach a decision

(e.g., speed versus accuracy). In so doing, it provides a novel ac-

count of decision confidence.

Most extensions of SDT, which account for both RT and

accuracy, attribute certainty judgment to the level of evidence

supporting each choice (but see Audley, 1960). Accordingly, cer-

tainty must reflect the probability correct. For example, in Vick-

ers’ balance-of-evidence model (Vickers, 1979; Vickers and

Smith, 1985), confidence is a monotonic function of the differ-

ence of accumulated evidence for the chosen option and alter-

native option(s). Recent models based on a Bayesian theory of

decision-making (e.g., Beck et al., 2008; Ma et al., 2006) extend

this framework to approximate a posterior probability distribu-

tion from an assembly of accumulators. All such models suggest

that the level of certainty is closely related to probability correct

(but see Drugowitsch et al., 2014). Moreover, since probability

correct is lower on more difficult trials, which are associated

with longer RTs, these models also predict an empirical relation-

ship between decision time and confidence, similar to those in

Figure 2A. The similarity is superficial, however, because it is ex-

plained by difficulty—motion coherence in our study. Our sec-

ond experiment demonstrates that even in the absence of a

change in probability correct, elongation of RT leads to lower

confidence about motion direction. On the other hand, our first
uron 84, 1329–1342, December 17, 2014 ª2014 Elsevier Inc. 1335
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Figure 5. A Simple Bounded Accumulation Model Predicts Choice, RT, and Certainty

(A) The model. Two accumulators compete by integrating noisy momentary evidence in favor of the two choices. Momentary evidence (e1, e2) is drawn from a

bivariate normal distribution. The accumulator that first reaches the absorbing bound dictates the choice and decision time.

(B) The choices and decision times of the model across trials can be formalized by propagation of a probability distribution over time in the space confined by the

bounds of the two accumulators. The figure shows the joint distribution of decision variable at 1 s for upward 12.8% coherence. The correlation between e1 and e2
is �0.79.

(C) At the time of the decision, the DV of the winning accumulator (vj) is at the upper bound, but the DV of the losing accumulator (vi) can span a range of values.

Panels depict DV distributions associated with correct and incorrect choices for the samemotion strength as in (B). Note that the distribution depends on decision

time.

(D) The probability of a correct response depends on both the decision variable and decision time. Colors correspond to the log odds of a correct response across

all motion strengths (Equation 3). The inverted wedge at the left side of the figure corresponds to combinations of the DV and decision time that have extremely

low probabilities. Termination of the decision-making process in that region is due to noise and unlikely to lead to better-than-chance accuracy. Combinations of

the DV and decision time to the right of the wedge are much more likely and show the dependence of expected accuracy on the DV and time.

(E) Model predictions for the subject’s certainty. The model parameters were estimated by fitting the overall distribution of RTs, irrespective of choice and

certainty (same parameters as those used in Figure 1C). These parameters were then used to predict the model certainty for correct and error choices as a

(legend continued on next page)
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(A andB) On half of the trials for the two lowestmotion strength (0%and 3.2%coherence), a 160ms pulse of reversemotionwas presented to cancel the evidence

from the preceding stimulus. (A) The reverse pulse causes approximate cancellation of the immediately preceding motion sequence. Traces show average

motion energy profiles for 3.2% coherence trials for 360ms of normal stimulus (blue) or a 160ms reverse pulse following 200ms of normal stimulus (red). Positive

values correspond to the correct direction, which is opposite to the reverse pulse. Shaded area represents SEM. In a bounded accumulation model, the reverse

pulse is expected to increase RTwithout changing the proportion of correct choices. (B) Probability correct and reaction times in the presence (gray) and absence

(white) of reverse pulse. Each column displays data from one subject. Error bars show SEM.
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experiment shows that RT alone cannot explain variations in cer-

tainty. Confidence is therefore informed by both the DV that sup-

ports a choice—both the winning and losing accumulators—and

the time taken to achieve that DV.

In hindsight, it seems obvious that the brain would exploit

elapsed time as a source of information. Certainty (or confi-

dence) is something a decision-maker experiences on a single

choice. In addition to deciding what is the correct choice, the de-

cision-maker must ascertain whether the evidence derives from

a reliable or unreliable source. This is not easily ascertained from

the evidence alone. Within the framework of bounded accumula-
function of motion strength. The exact mapping between certainty and saccade l

interpretation of task instructions. However, the model correctly predicts the form

(F) Fit of the model’s predicted certainty to confidence ratings. For each subject, w

and certainty.

Ne
tion, decision time confers an important clue to reliability for the

simple reason that more reliable evidence leads to faster deci-

sions. In these models, the mapping between the DV and accu-

racy is time dependent (Kiani and Shadlen, 2009). This time

dependence can be learned and exploited by the brain to cali-

brate the sense of confidence. Currently, it is unclear whether

this insight extends to more complex decisions that occur over

longer timescales. However, for simple perceptual decisions

that form in a fraction of a second to a few seconds, keeping

track of the decision time and using it to calibrate the sense of

certainty provides a computational shortcut.
anding positions varies from subject to subject, as expected from idiosyncratic

of the certainty functions for each of the six subjects (Figure 4).

e assume a monotonically increasing relationship between saccade endpoint
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(A and B) Each column represents one subject. Certainty judgments with and without a reverse pulse are shown in (A). Bar graphs show the average horizontal
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It seems possible that neurons in the lateral intraparietal area

(LIP) furnish a representation of the state of evidence (Churchland

et al., 2008; Gold and Shadlen, 2007; Roitman and Shadlen,

2002). Indeed, the same LIP neurons have been shown to repre-

sent elapsed time when an animal must base a behavior on this

quantity (Janssen and Shadlen, 2005; Leon and Shadlen, 2003).

It remains to be seen how evidence and elapsed time are com-

bined to support a level of confidence. Neurons in orbitofrontal

(Kepecs et al., 2008; Padoa-Schioppa and Assad, 2006), cingu-

late cortex (Hayden et al., 2008), and supplementary eye field

(Middlebrooks and Sommer, 2012) have been suggested to

represent the outcome of this computation and may be perform-

ing the computation. The idea that elapsed time affects certainty

judgments leads us to suspect that the brainmust represent prob-

ability, implicitly at least, in a dynamic sense. Elapsed time during

a decision is impetus to discount the belief that a hypothesis is

true, given the data (Hanks et al., 2011; Shadlen et al., 2006).

EXPERIMENTAL PROCEDURES

Observers

Six young adult human subjects (four males and two females) participated in

the experiments. Five were naive to the purpose of the experiment. Observers

had normal or corrected-to-normal vision and, except for one subject, had

been extensively trained on the direction discrimination task prior to data

collection. Informedwritten consent was obtained from the subjects. All exper-

imental procedures were approved by the institutional review board at the Uni-

versity of Washington.

Eye Monitoring

Eye movements were recorded noninvasively using a high-speed infrared eye-

tracking device (Eyelink 1000, SR Research) controlled by a dedicated host PC.
1338 Neuron 84, 1329–1342, December 17, 2014 ª2014 Elsevier Inc
Subjects were seated in an adjustable chair in a semidark booth, with their

chin and forehead resting on a tower-mount chinrest. Prior to data collection,

the systemwas calibrated by showing nine targets at center, edges, and corners

of the display monitor. During data collection, gaze position of the left eye was

sampled at 500 Hz, saved on the host PC, and passed to the experimental con-

trol computer via Ethernet link. The system operated in a pupil-corneal reflection

mode and had an average accuracy of 0.25�–0.5�. We monitored the eye posi-

tion to ensure fixation during stimulus viewing (window 4 3 4 deg2) and to

achieve precise measurements of choice-reaction times (see below).
Behavioral Tasks

Each trial started when the subjects maintained fixation on a circular fixation

point (FP, 0.3� diameter) at the center of the display monitor (17’’ flatscreen

CRT;ViewSonicPF790; refresh rate, 75Hz; screen resolution8003600; viewing

distance 57 cm). Immediately, two targets appeared 8� above and below the FP

to indicate the twopossiblemotiondirections (upwardordownward). Each target

wasahorizontal rectangle (0.5� by9�) shaded fromredon the left side togreenon

the right side (Figure 1A). After a short delay (200–500ms, truncated exponential

distribution), dynamic random dot motion was displayed in a virtual aperture (5�

diameter) centered at the FP. The dots were white squares (0.088� per side) on a
black background. The dot density was 16.7 dots/deg2/s. The stimulus is

described indetail elsewhere (ShadlenandNewsome,2001). It consistedof three

independent sets of dots shown on consecutive video frames. The strength of

motion was controlled by adjusting the probability that a dot displayed in a video

frame would be displaced by Dy in a video frame 40 ms later (i.e., three video

frames). The intervening frames contained independent sets of dots. The

displacement, Dy, was consistent with a speed of ± 5 deg/s. Dots that were

not displaced were replaced by a dot at a random location in the aperture. We

refer to this displacement probability (times 100) as motion strength or coher-

ence. Matlab code for generating the display is freely available as an add-on to

the psychophysics toolbox (Brainard, 1997).

Motion direction and strength varied randomly from trial to trial. For half of

the trials, we removed trial-to-trial variability of motion stimulus by using a pre-

determined seed (one per coherence and direction) to initiate the random
.
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number generator. For the other half of trials, the seed was chosen randomly.

The subjects were asked to report motion direction when ready by making a

saccadic eye movement to the corresponding target and maintaining stable

fixation on the target for 500 ms. They were instructed to report choice cer-

tainty by directing the same saccade along the horizontal dimension of the

target. The choice certainty scaled from most uncertain (guessing) on the

left edge of target (red color) to most certain (100% confident) on the right

edge (green color). Saccadic endpoint along the chosen target was defined

as the average eye position in a 200 ms window toward the end of the fixation

period. The random dot stimulus was extinguished when the gaze left the cen-

tral fixation window. Auditory feedback was delivered for correct and error

choices irrespective of the subject’s reported certainty. On trials with 0%

coherence, the subject randomly received the correct feedback on half of

the trials. RT was calculated as the time from motion onset to saccade initia-

tion, which was detected when the gaze first exited the fixation window. In the

first experiment, we collected 7–15 blocks of data, each consisting of 200 tri-

als, from each subject.

In the second experiment, on half of the trials with 0%or 3.2%motion coher-

ence, a 160 ms long reverse pulse was presented at a random time starting

200–400 ms after the stimulus onset. The reverse pulse was a sequence of

12 frames of the immediately preceding stimulus played in reverse order.

The reverse play was performed within each independent set of dots (see

above). Let Ai, Bi, and Ci represent a set of three temporally adjacent, indepen-

dent frames, where the subscript defines the 40 ms epoch. A sequence of

frames for the reverse pulse and the preceding stimulus is A1 B1 C1 A2 B2 C2

A3 B3 C3 A4 B4 C4 A5 B5 C5 A4 B4 C4 A3 B3 C3 A2 B2 C2 A1 B1 C1, which spans

360ms. Because the pulse was presented only onweakmotion trials, it did not

produce perceptible changes in the stimulus. None of the subjects reported

any noticeable stimulus change compared to the first experiment in the

briefing after the experiment. We collected 5–12 blocks of data, each consist-

ing of 200 trials, from each subject.

Bounded Accumulation Model

The diffusion model used to fit the RT data in Figure 1C assumes a race

between two accumulators that represent the available choices. Each accu-

mulator integrates momentary evidence toward a decision bound. The accu-

mulator that reaches the bound first dictates the choice. The momentary

evidence to the two accumulators is represented by a bivariate Normal distri-

bution with mean m!= ½kC;�kC� and covariance matrix V =

�
1 r
r 1

�
, where k

translates motion strength (C) to the mean of momentary evidence, and r

defines the input correlation of the two accumulators. The duration of the accu-

mulation process is termed decision time, and the accumulated evidence is

termed the decision variable. The propagation of the probability density of

the decision variable over time can be calculated using a simplified two-

dimensional Fokker-Planck equation:

vpð v!; tÞ
vt

= �
X2

i = 1

mi

vpð v!; tÞ
vvi

+
X2

i = 1

X2

j =1

Dij

v2pð v!; tÞ
vvivvj

; (Equation 1)

where pð v!; tÞ is the probability of the decision variable vector v! at time t, and

Dij = 0:5
P2

m= 1simsjm. The boundary conditions of the Fokker-Planck equation

are

pð v!; t0Þ= dðv1Þdðv2Þ
pðviðtÞ=Bu; tÞ= 0

; (Equation 2)

where d(.) is the Kronecker delta function. The first condition constrains the

initial value of the decision variable to zero for both accumulators. The second

condition enforces that the accumulation terminates whenever an accumu-

lator reaches its ‘‘absorbing’’ upper bound (Bu). Additionally, we assumed

that each accumulator has a lower reflective bound (Bl) that prevents very

low accumulated evidence, just as neural responses are bounded from below.

In addition to its biological appeal, this lower reflective bound facilitates the nu-

merical solution of the Fokker-Planck equation.

RT is the sum of decision time plus a combination of sensory and motor

delays, termed nondecision time. We assume that nondecision time has a

Gaussian distribution with mean T0 and variance s2T0. Overall, the model has

six free parameters: k, r, Bl, Bu, T0, and s2T0. A maximum likelihood procedure
Ne
was used to fit the model to each subject’s RT distribution. For each trial, we

obtained the probability density of the decision variable, pð v!; tÞ, by numerical

solution of the Fokker-Planck equation. The solution established the distribu-

tion of bound crossing times and was used to calculate the expected proba-

bility of the observed RT for the model parameters. We found the parameters

that best explained the overall distribution of RTs, irrespective of choice. Then

those parameters were used to predict the subject’s choices (Figure 1C, top

row), the correct RTs (Figure 1C, bottom row), and certainty. This fit/prediction

method, which is novel to the best of our knowledge, offers reassurance

against over fitting.

The model provides explicit predictions for the relationship between DV, de-

cision time, and certainty. At the time of the decision, the winning accumulator

is at the absorbing upper bound, Bu. The losing accumulator, however, can

have any value between Bl and Bu. The farther this accumulator is from Bu,

the more likely that the choice is correct. However, the mapping between

the decision variable and probability of being correct varies with decision

time (Figure 5). We can calculate the log-posterior odds of a correct response

for all possible combinations of decision times and decision variables (Kiani

and Shadlen, 2009):

Log
pðD1j v!; tÞ
pðD2j v!; tÞ= Log

P
i

pð v!; tjD1;CiÞpðCiÞP
i

pð v!; tjD2;CiÞpðCiÞ
; (Equation 3)

where t is the decision time andD1 andD2 are the correct and incorrect motion

directions, respectively.

Our fit/prediction method is adopted to show off the power of the model; we

can now predict both the choices and their associated certainty based on only

the reaction times. A model that is fit to both RT and choice does only slightly

better in explaining the choices. We compared the RT fits and the combined

choice-RT fits using Bayes Information Criterion (BIC) and R2 metrics. Because

the two models differ in the data used for the fitting (RTs alone versus the com-

bination of choices and RTs), we did not use the model log-likelihoods for BIC

calculation. Rather, we calculated separate log-likelihoods for choices and re-

action times for eachmodel. BIC for choiceswas�2.2± 3.6 (mean±SD; range=

[�8.4, +1.9]) across the subjects. BIC for reaction times was�1.4 ± 6.5 (mean ±

SD; range = [�12.9, +4.5]). BIC for explaining the combination of choice and RT

of individual trials was �3.6 ± 7.3 (mean ± SD; range = [�13.0, +5.5]). These

small differences indicate that RTs are largely adequate to constrain the model

parameters. Therefore, one can use choices and certainty to test themodel pre-

dictions, as we do in the current paper. We also used R2 to quantify the corre-

spondence of the mean RTs and probability corrects with the model prediction

curves shown in Figure 1. Similarly, R2 was calculated for the combined choice-

RT fits. The R2 difference for the psychometric functions was negligible (mean ±

SD = 0.008 ± 0.04; range = [�0.04, +0.09]). The R2 difference for the RT curves

was negligible, too (0.001 ± 0.005; range = [�0.007, +0.007]). The overall quality

of the fits was good. For the pure RT fits (Figure 1), themean R2 of the predicted

psychometric function was 0.62 across subjects. The mean R2 for the reaction

times was 0.94.

Data Analysis

The following multiple regression analysis was used to evaluate the relation-

ship of RT and choice certainty:

S= b0 + b1C+b2T; (Equation 4)

where C is motion strength, T is reaction time, and bi are regression coeffi-

cients. S is the horizontal position of the saccadic endpoint. The null hypothe-

sis is lack of a relationship between RT and choice certainty (H0 : b2 = 0). We

performed this analysis separately for correct and error trials. The 0% coher-

ence trials were included in both analyses. Similar results were obtained by

excluding these trials.

The following regression analysis was used to test whether the slope of

regression in Equation 4 changes for error trials compared to correct trials:

S= b0 + b1C+ b2T + b3I+ b4CI+ b5TI; (Equation 5)

where I is an indicator variable (0 or 1 for correct and error trials, respectively).

The null hypothesis is that the slope does not change for error trials (H0 : b5 = 0).

The values reported in the text are based on trials using 3.2% and 6.4%
uron 84, 1329–1342, December 17, 2014 ª2014 Elsevier Inc. 1339
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coherence, because errors were rare with stronger motion (same for the other

comparisons of correct and error trials mentioned in the text). Similar results

were obtained with all nonzero coherence levels included.

We tested the relationship between coherence and certainty for error re-

sponses using the following regression analysis:

S= b0 + b1C (Equation 6)

The null hypothesis is that certainty about errors is lower for stronger motion

(H0 : b1 % 0), as predicted by SDT and some other models in which certainty

is informed only by the state of theDV at the time of decision (Green and Swets,

1966; Kepecs et al., 2008; Kim and Shadlen, 1999; Vickers, 1979).

To characterize the effect of RT (and motion strength) on the probability

correct, we used a logistic function,

Pcor =
�
1+ e�ðb0 + b1C+ b2TÞ��1

; (Equation 7)

For the analyses associated with Figure S5, the null hypothesis is that proba-

bility correct is independent of RT (H0 : b2 = 0).

We evaluated the change of choice certainty and RT with reverse pulse us-

ing a two-way ANOVA. For each analysis coherence and reverse pulse (pres-

ence or absence) were the main factors. Saccadic endpoint and RT were the

dependent variables.

To test whether the presence of reverse pulse changes the relationship be-

tween RT and choice certainty, we used multiple regression,

S= b0 + b1C+ b2T + b3CI+b4TI; (Equation 8)

where I is an indicator variable (1 for trials with a reverse pulse and 0 otherwise).

The null hypothesis is that the relationship between certainty and RT is unaf-

fected by the reverse pulse (H0 : b4 = 0). Only 0% and 3.2%motion coherence

were used in this analysis because these were the only conditions that incor-

porated the reverse pulse. Based on this and similar analyses, we established

that the reverse pulse also did not change the effect of coherence on S.

We used a bootstrap analysis to investigate whether the changes of cer-

tainty with reverse pulse could be attributed to its small effect on probability

correct. In each iteration of the test, we randomly sampled the trials with

replacement and constructed an empirical curve that explained changes of

saccade endpoint as a function of accuracy for different motion strengths in

the absence of a reverse pulse. Then we performed a linear interpolation on

this curve to estimate the expected average saccade endpoint for the

observed accuracy of 3.2% coherence trials in the presence of the reverse

pulse. We repeated this calculation 10,000 times to create a distribution of ex-

pected average saccade endpoints. This distribution was used to evaluate the

null hypothesis that on trials with reverse pulse and 3.2% coherence motion,

the average saccade endpoint is explained by the observed change in

accuracy.

In the figures showing probability correct or saccade endpoint as a function

of RT (Figures 2, 6, S3, S5, and S6), trials were grouped as quintiles based on

RT in order to simplify the display. All the analyses were performed on individ-

ual trials, not on the quintiles.

For the analyses of pooled data from the subjects, we first standardized RT

and saccadic endpoints for each subject by subtracting the mean and dividing

by the standard deviation (i.e., Z score). Similar results were obtained by pool-

ing the raw (nonstandardized) data across subjects.

Motion Energy Analysis

Motion energy is a measure of motion strength along themotion direction axis.

Due to the stochastic nature of the random dot stimulus, the strength of motion

fluctuates from trial to trial and at different times on a single trial. The motion

energy was calculated by using two pairs of quadrature spatiotemporal filters,

as specified in Adelson and Bergen, 1985; Kiani et al., 2008, 2013. Each pair

was selective for one of the two opposite directions in our experiment. The fil-

ters were convolved with the three-dimensional spatiotemporal pattern of mo-

tion on each trial. For each quadrature pair, the convolution results were

squared and summed together, then integrated over space to yield the motion

energy along the filter direction as a function of time.We calculated the netmo-

tion energy by subtracting from the motion energy along the stimulus direction

the energy along the opposite direction. Across trials, net motion energy per

unit time is a linear function of motion coherence.
1340 Neuron 84, 1329–1342, December 17, 2014 ª2014 Elsevier Inc
The use of motion coherence in the analyses can potentially obscure the true

effect of sensory evidence on certainty because it does not take into account

trial-to-trial fluctuations of evidence for the same motion coherence. To test

whether trial-to-trial fluctuations of evidence could explain away the relation-

ship of RT and certainty, we repeated the regression analysis of Equation 4

with motion energy:

S= b0 + b1M+ b2T ; (Equation 9)

where M represent motion energy in favor of the chosen target. Two measures

of motion energy were used in this analysis: the integral of motion energy and

the average motion energy within the trial. To account for nondecision times,

the last 200 ms of observed motion was excluded from the calculations.

This exclusion is not critical for the results.
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