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SUMMARY

Difficult decisions often require evaluation of sam-
ples of evidence acquired sequentially. A sensible
strategy is to accumulate evidence, weighted by its
reliability, until sufficient support is attained. An
optimal statistical approach would accumulate evi-
dence in units of logarithms of likelihood ratios
(logLR) to a desired level. Studies of perceptual deci-
sions suggest that the brain approximates an analo-
gous procedure, but a direct test of accumulation, in
units of logLR, to a threshold in units of cumulative
logLR is lacking. We trained rhesus monkeys to
make decisions based on a sequence of evanescent,
visual cues assigned different logLR, hence different
reliability. Firing rates of neurons in the lateral intra-
parietal area (LIP) reflected the accumulation of
logLR and reached a stereotyped level before the
monkeys committed to a decision. The monkeys’
choices and reaction times, including their variability,
were explained by LIP activity in the context of accu-
mulation of logLR to a threshold.

INTRODUCTION

Complex decision making often requires the collection of multi-

ple pieces of evidence before committing to a choice. Along the

way, the brain must evaluate each piece of evidence, combine

them together, and determinewhethermore evidence is needed.

The process can be studied at the neural level by training an an-

imal to indicate its decisions with an eyemovement. In that case,

neurons in the parietal and prefrontal cortex, which are associ-

ated with response selection, represent the accumulating evi-

dence during deliberation (Kim and Shadlen, 1999; Shadlen

et al., 1996; Shadlen and Newsome, 2001). The same neurons

achieve a stereotyped level of firing rate upon completion of
the decision (Churchland et al., 2008; Ding and Gold, 2012; Roit-

man and Shadlen, 2002). Thus, these neurons are thought to

participate in the conversion of evidence to a decision variable

(DV) suitable for comparison to a threshold (or bound) for termi-

nating the decision process with a choice. Although the underly-

ing neural mechanisms are less well understood, a similar

‘‘bounded evidence accumulation’’ framework explains a variety

of perceptual and mnemonic decisions in animals and humans

(O’Connell et al., 2012; Ratcliff and McKoon, 2008; Shadlen

and Kiani, 2013).

The idea is appealing because the accumulation of evidence

might be likened to the evolution of belief in a proposition. How-

ever, the concept presupposes that the brain possesses a

mechanism to convert sensory evidence into probabilistic values

associated with degree of belief (Gold and Shadlen, 2001; Pou-

get et al., 2013). It has been shown that humans and nonhuman

primates rationally combine simultaneous cues in accordance

with their reliability (Ernst and Banks, 2002; Fetsch et al., 2012;

Jacobs, 1999; Knill, 2007). However, such rational combination

of cues has not been studied extensively in the setting of deci-

sion making from a sequence of cues that are separated in

time. This is because most studies of decision making employ

a single stimulus whose reliability is fixed (i.e., statistically sta-

tionary) over the course of a decision.

To overcome this limitation, we previously trained monkeys to

observe a sequence of shape cues that furnished probabilistic

evidence bearing on a binary decision (Yang and Shadlen,

2007). This study showed that the monkeys based their deci-

sions on the combined evidence from four cues, giving more

weight to the more reliable cues. Moreover, as the shapes ap-

peared sequentially during a trial, the firing rates of neurons in

area LIP tracked the running sum of the evidence, in units pro-

portional to log likelihood ratio (logLR), for and against the choice

alternatives. This suggests that the brain can optimally combine

cues from sequential samples. However, two aspects of this

study preclude a direct connection to the ‘‘bounded evidence

accumulation’’ mechanism mentioned above. First, there was

nomeasure of decision termination (e.g., reaction time), because

four shape cues were shown on each trial. Second, although the
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Figure 1. Sequential Inference Task

(A) Trial flow. The monkey stares at a central fixation point at the beginning of a

trial, and two choice targets appear, followed by a sequence of shapes, which

are shown in succession every 250ms. Each shape supplies evidence bearing

on whether a reward is associated with one or the other choice target. The

sequence continues until the monkey initiates an eye movement to a choice

target. The reaction time is the interval from the onset of the first shape to

initiation of the saccadic choice.

(B) The shapes shown on a trial are independent, random draws from either of

the two discrete sampling distributions (indicated by color). On each trial, the

designation of the correct (rewarded) choice is randomized to Target A or B,

and the shapes are sampled accordingly. The ratio of sampling probabilities

associated with each shape implies that half of the shapes support one or the

other choice. Target A refers to the left choice target for monkey E and the red

choice target for monkey J.
animal based its choices on the cumulative evidence from the

four shapes, there was no actual requirement to integrate evi-

dence in time. This is because each shape remained visible

from the time it was presented until themonkeymade a decision.

Thus, it was possible that the monkeys based their decision on

the combination of the four cues present at the end of each trial.

Herewe employed amodified version of this probabilistic clas-

sification task in which a sequence of shape-cues are presented

transiently, until the monkey terminates the sequence with a de-

cision. The task makes explicit demands on working memory

and evidence accumulation. Moreover, to perform this task opti-

mally, themonkey should terminate decisionswhen the accumu-

lated logLR reaches a threshold level, or bound. This process,
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termed the sequential probability ratio test (SPRT) (Barnard,

1946; Good, 1979; Wald, 1947), is optimal in the sense that it re-

quires the least number of samples, on average, to achieve any

given level of accuracy (Wald and Wolfowitz, 1948). We hypoth-

esized that the primate brain approximates such a stratagem,

and we demonstrate neural correlates of this process in the firing

rates of neurons in area LIP.

RESULTS

Behavior
Monkeys made decisions between two peripheral targets based

on a sequential presentation of shapes (Figure 1A, see Experi-

mental Procedures). Each presented shape conferred probabi-

listic evidence that differed in reliability in predicting which target

(A or B) would furnish a reward. Although each of the eight

shapes could be shown on any trial, they were sampled differ-

ently depending on the reward-associated target (Figure 1B).

Four shapes favored one of the targets (‘‘Target A’’) because

theyweremore likely to appear when it was assigned the reward.

The other four shapes favored the other target. Each shape’s ev-

idence can be quantified by logLR: the sign indicates a favored

target and the magnitude represents the reliability of evidence.

While the monkey maintained fixation, shapes appeared parafo-

veally every 250 ms, one at a time, until the monkey indicated its

decision with a saccadic eyemovement to one of the two targets

(Figure 1A). The monkey was rewarded for correct choices after

a fixed or variable delay. For the two monkeys, target designa-

tions ‘‘A’’ and ‘‘B’’ refer to left and right (monkey E) or red and

green (monkey J).

As shown in Figure 2A, both monkeys displayed a wide range

of reaction times (RTs) on this task. The serrated quality of the

histograms is consistent with the rate at which the shapes

were shown (4 Hz), although there is considerable variability

that blurs this discrete schedule. Evidently, monkey J made

some decisions based on only a few shapes, but both monkeys

often delayed their responses until after viewing several shapes.

We therefore wished to ascertain whether they used information

from all the shapes or waited for a particular shape or perhaps

used information from a favored time period.

To address this empirically, we used logistic regression to es-

timate the leverage of shapes presented at the beginning

through the end of the trial on the choice. To isolate the leverage

of shapes presented at particular times, we considered all the

other shapes shown in the trial as confounders (Equations 1

and 2). The leverage is summarized by a single weighting coeffi-

cient (b1, Equation 2), displayed in Figure 2B. The left half of these

graphs displays the effect of evidence presented at the begin-

ning of the trial on the monkey’s ultimate choice. Because the

shapes appeared (and disappeared) every 250 ms, this portion

of the graph contains only three discrete values, corresponding

to the onset times of the first three shapes. Shapes presented

in each of these epochs had coefficients significantly greater

than zero, indicating that they affected the monkeys’ choices

(p < 0.05 up to the tenth shape for each monkey).

The right half of the graph plots the effect of the shapes on

choice at the time the shapes appeared relative to the saccadic

choice. Since saccade initiation is not fixed to the time of
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Figure 2. Behavior

Data from the two monkeys are depicted in the left and right columns.

(A) Reaction time (RT) distributions (histogram bin width = 10 ms).

(B) All shapes, except the last, influenced the monkeys’ decisions. Graphs

show the relative influence of shapes that appeared within ±10 ms of the time

indicated on the abscissa. The leverage is estimated from logistic regression

(b1 in Equation 2), which incorporates the other shapes shown on a trial as

potential confounders. On the left portion of the graph, time is aligned to the

onset of the first shape; shapes appear every 250ms and onsets are shown by

the short thick lines (shading indicates SE). On the right portion of the graph,

time is aligned to saccade initiation. The leverage is calculated every 10 ms
appearance of a shape, we applied logistic regression at finer

time steps. At each time point, we extracted the leverage of

shapes that were presented within ±10 ms of the time point dis-

played on the graph. Importantly, shapes that were presented

long before the saccade had leverage on the choice (up to

�1.5 s and �0.75 s for monkeys E and J, respectively; p <

0.05), indicating that early shapes affected the choice even

when they were followed by multiple shapes. The analysis also

demonstrates that shapes that are shown within the last 200–

300 ms had negligible effects on the choice (last 270 ms and

180 ms for monkeys E and J, respectively). This observation im-

plies that, on most of trials, the monkeys had committed to a de-

cision before the evidence from the last shape was incorporated

into the deliberation process. For monkey E, this non-decision

interval was long enough to allow for the possibility that on

some trials even the penultimate shape appeared after commit-

ment (i.e., if a saccade occurred <20 ms after onset of the final

shape).

We applied these adjustments to generate the ‘‘number of

samples’’ histograms in Figure 2C. These discrete RT distribu-

tions depict more clearly the number of shapes the monkeys

used to reach their decision, whichwe termN*. Althoughmonkey

E used more samples than monkey J (mean 5.7 ± 1.4 versus

2.4 ± 1.5 shapes, respectively), both monkeys exhibited consid-

erable variance in the number of shapes they relied upon. A

possible explanation will be clear in a moment. Importantly,

when either monkey’s decision was based on more than one

shape, the entire succession of shapes, from the first to the

N*th, was influential. From here on, we perform all analyses on

these shapes.

By basing their decisions on more than one shape, the mon-

keys improved their performance. Had they based their deci-

sions on just one shape, even perfect knowledge of the assigned

logLR would achieve only 63% correct (i.e., rewarded) choices,

owing to the overlap of the sampling distributions (Figure 1B).

However, monkeys E and J achieved 85% and 80% correct

choices, respectively. Perhaps a more telling observation is

that the fraction of trials in which the monkey chose the option
(shading indicates SE), using all trials in which a shape appeared within ±10ms

of the time indicated.

(C) Distribution of the number of shapes that affected the decision in each trial.

This is a discrete version of the RT distribution, adjusting for late shapes that

did not influence the decision. We refer to this number of shapes as N* (see

Experimental Procedures).

(D) Choice probabilities were governed by the cumulative evidence supplied

by the shapes. The cumulative evidence is the sum of the logLR assigned to

the first through N*th shapes shown on each trial.

(E) Cumulative evidence at the end of decisions. Points are the means of the

cumulative logLR for trials that ended with a total of N* shapes leading to

choice A (circles) or B (squares). Error bars represent SD to highlight the di-

versity of the values (SEM are about half the size of the symbols). Dashed lines

are fitted lines (weighted least-squares).

(F) Comparison of the assigned weights to the apparent subjective weights

assigned by the monkeys to each unique shape. Assigned weights are in units

of logLR. The weights are the coefficients from logistic regression (b1-8,

Equation 3). Error bars represent SE. Most error bars are smaller than the data

symbols.

See also Figure S1.
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A B Figure 3. LIP Neural Activity Accompanying

Decision Formation

(A) Average firing rates reflect the cumulative evi-

dence from the sequence of shapes. Average firing

rates (lower row) are plotted as a function of time

from the onset of the first shape. The five curves in

each panel correspond to five quantiles grouped

by the cumulative logLR in favor of Tin. Quantiles

are redefined in each epoch, denoted by the break

between panels, which respects the sensory delay

(ts) evident in the leftmost panel (arrow). Notice

also the�100ms rise time of the response after the

arrow. Firing rates in each epoch were calculated

in a 150mswindow (gray bars on the abscissa; see

Experimental Procedures). Curve thickness de-

picts SEM. The last effective shape in each trial

was excluded from the analysis. Insets show the

mean firing rate at the end of the corresponding

epoch, plotted for all unique values of cumulative

logLR in each epoch (thickness depicts SEM).

Colored symbols correspond to the quantiles in the

graphs below the inset. All panels include both

correct and error trials.

(B) The average change in firing rate induced by

each of the eight shapes.Most error bars (SEM) are

smaller than the symbols.

For monkey J, only trials with the red target in the

RF are shown. See also Figures S2 and S3 and

Movies S1 and S2.
supported by the cumulative logLR from the shapes—regardless

of what was actually rewarded—was 90% and 97% of trials (E

and J, respectively; Figure 2D).

More striking yet, the cumulative logLR was remarkably

similar, on average, whether the monkeys used a few or many

shapes to make a decision (Figure 2E). The consistency of these

averages, as a function of the number of shapes, suggests that

the decisions might terminate when the representation of cumu-

lative logLR reaches a threshold level. Accordingly, the monkeys

tended to use fewer shapes on trials in which the first few shapes

conferred stronger evidence (Figure S1A). We infer that the rep-

resentation is inexact, however, because the SDs (error bars in

Figure 2E) are substantial, a point we will elaborate later. Also,

this putative threshold level may not be time invariant (i.e., flat),

as evidenced by the dashed lines (Figure 2E; p < 10�4, weighted

regression). However, the similarity of logLR at decision termina-

tion rules out the main alternative to a threshold on accumulated

evidence. Were the reaction times controlled by some other cri-

terion, independent of the level of evidence, the average logLR

would be the product of the number of shapes times the expec-

tation of the logLR, but this is clearly refuted by the data

(Figure S1B).

Finally, we assessed howmuch weight the monkeys assigned

to each of the eight shapes (Figure 2F). For this analysis, we

again used logistic regression, but instead of using the sum of

the assigned logLR, we estimated the relative weighting of

each of the unique shapes (fitted coefficients b1–8, Equation 3).

For both monkeys, the estimated weights differ from the as-

signed weights, but they have the correct sign, and they are or-

dered appropriately with just one exception for each monkey

(Pearson r = 0.98 and 0.93 for monkeys E and J, respectively;
864 Neuron 85, 861–873, February 18, 2015 ª2015 Elsevier Inc.
p < 0.01). Although presented location of the shapes had weak

effects on the leverage inmonkey E (data not shown), such effect

would not affect the rest of the analyses because the location de-

pendency is averaged out in any analysis that is based on a large

number of samples. From these, we conclude that bothmonkeys

learned the approximate weights of the shapes. We refer to

these approximations as subjective weights.

Physiology
We recorded from single neurons in the ventral part of the lateral

intraparietal area (LIPv) while the monkeys performed the

sequential inference task in Figure 1. We selected all well-iso-

lated neurons that exhibited spatially selective persistent activity

during memory-guided saccades (n = 67; 38 in monkey E; 29 in

monkey J). During recording, we mapped the response field (RF)

of a recorded neuron and placed one choice target inside the RF

(Tin) and the other choice target outside the RF (Tout). The targets

were positioned symmetrically about the fixation point. The tar-

gets differed in color for monkey J, whereas both were red for

monkey E, reflecting the two training strategies (see Discussion

and Experimental Procedures).

Shortly after the presentation of the first shape, LIP activity

began to reflect the cumulative evidence in favor of the choice

associated with the neuron’s RF. Figure 3A shows the evolution

of the firing rate as a sequence of up to five shapes were pre-

sented. The trials are grouped into five quantiles based on the

cumulative assigned logLR in each epoch. To avoid contamina-

tion of these averages with activity associated with saccade

preparation, the firing rate averages exclude activity induced

by the N*th shape. Note that any one trial will tend to contribute

to different quantiles in each epoch, and while almost all trials



A B Figure 4. LIP Neural Activity Accompanying

Decision Termination

(A) Average firing rates were obtained from data

aligned to saccade initiation, grouped by choice

(Tin or Tout). Within this grouping, the trials were

sorted by quantile of the assigned cumulative

logLR at the point in time ts+100 ms prior to each

plotted time point (i.e., 100 ms after the responses

begin to diverge in the leftmost panel of Figure 3A).

Curve thickness depicts SEM. Insets show the

diminishing effect of cumulative logLR on firing

rate preceding saccade initiation to Tin. Points are

regression slopes (firing rate as function of cu-

mulative logLR); shading indicates SE. The red

arrow marks the time when the cumulative logLR

ceases to affect the neural response.

(B) Changes in LIP activity induced by the last

effective shape (N*th) when themonkeys chose Tin.

The abscissa shows the logLR assigned to each of

eight unique shapes, as in Figure 3B. Dashed lines

are fits using the four shapes that support Tin.

Monkey J never chose Tin when the N*th shape

supplied the strongest evidence for Tout. Error bars

represent SEM.

For monkey J, only trials with the red target in the

RF are shown. See also Figure S3 and Movies S1

and S2.
contribute to the responses to the first shape epoch, the number

declines in the later epochs.

There are two salient observations evident in the data from

both monkeys. First, shortly after appearance of the first shape,

the firing rates vary as a function of the logLR assigned to the

shapes. The effect is not evident immediately but begins after

200 ms or 130 ms (for monkeys E and J, respectively; Figure 3A,

arrows). These long ‘‘sensory’’ latencies (ts) are consistent with

other studies in which parafoveal information impacts the pe-

ripheral RF (Huk and Shadlen, 2005; Roitman and Shadlen,

2002), and they might reflect the different strategies employed

by the two monkeys to solve the task (see below). Second,

with each successive shape, the range of the cumulative logLR

expands, and this is reflected in the separation of the firing rates,

grouped by quantile of logLR. In addition, there are some fea-

tures unique to each monkey. For monkey E, even when the

evidence is neutral (middle quantile; green trace), there was a

gradual increase in the firing rate as a function of time. Such

an evidence-independent rise is thought to reflect a temporal

cost, or ‘‘urgency,’’ to complete the decision (Churchland

et al., 2008; Drugowitsch et al., 2012; Hanks et al., 2014; Thura

et al., 2012) as explained further below. For monkey J, the firing

rates reflected cumulative logLR only on trials when the red

target was displayed in the RF (Figure S3). For this reason, we

will show physiological results separately for trials with the red

target (Figures 3 and 4) and the green target (Figure S3) in the RF.

The quantile grouping helps to simplify the graphs, but it con-

ceals a more refined relationship between the gradation of evi-

dence and LIP firing rate. The insets in Figure 3A show that the

firing rate varies approximately linearly with the cumulative logLR

throughout its range. Each subplot shows the mean of the firing

rate as a function of all unique values of cumulative logLR in each

epoch. Notice that the correspondence between firing rate and
cumulative logLR is roughly consistent for the first five to six

shape epochs, which accounts for �90% of the trials. We do

not expect these relationships to be identical (owing to condi-

tionalization based on RT; see Figure S4B), but the similarity pro-

vides support for the following conclusion: although the shapes

appear for only 250 ms and then disappear, they continue to

impact the firing rate by contributing to the cumulative evidence

in later epochs. This claim is supported more formally by a

regression analysis (Equation 4). For example, shapes presented

in the first epoch have significant leverage on the firing rate

through the later epochs (up to sixth and fifth epoch for monkeys

E and J, respectively; p < 0.05).

During decision formation, each new shape adds a quantity of

evidence and should therefore increment the LIP activity accord-

ingly. We therefore estimated the change in firing rate (DFR)

induced by each of the eight shapes (Equation 5). Figure 3B

compares the eight DFR values, averaged across epochs, to

the assigned logLR values (see also Figure S2). For both mon-

keys, shapes that were assigned positive logLR induced incre-

ments in the firing rate (DFR > 0), and shapes that were assigned

negative logLR induced decrements. For monkey E, the magni-

tudes of the decrements were small, but this is explained by a

positive offset to all of the DFR values, consistent with an evi-

dence-independent increase in firing rate as a function of time

mentioned above (e.g., neutral quantile in Figure 3A).

The reaction-time task allows us to examine the neural events

associated with termination of deliberation and commitment to a

choice. In contrast to the divergence of responses associated

with evidence accumulation, the activity near the end of the

decision process exhibited convergence. Figure 4A shows the

average firing rates aligned to the onset of eye movements to

Tin or Tout. The responses are broken down further by the relative

support for that choice. Note that relative to the time of saccade,
Neuron 85, 861–873, February 18, 2015 ª2015 Elsevier Inc. 865



new shapes do not appear and disappear at regular intervals (un-

like Figure 3). Nonetheless, we could infer the cumulative logLR

that would influence the LIP firing rate after the sensory delay (ts)

plus 100 ms rise time (evident in Figure 3A). Thus, we sorted the

LIP firing rates at each time point (t) into five quantiles based on

the cumulative logLR ts + 100 ms prior to each time point (i.e., t –

ts – 100 ms) (colors, Figure 4A). The resulting graph allows us to

visualize when, in relation to the saccade, variation in the cumu-

lative evidence influenced the neural response.

For Tin choices, the diversity of neural activity associated with

strength of evidence gradually dissipated near the time of the

saccade. We interpret this as a sign of a threshold or bound

that would terminate decisions in favor of Tin. Notably, responses

converged to the same level of threshold for both correct and er-

ror Tin choices (p > 0.2), suggesting that error choices occurred

because the LIP firing ratemisrepresented the cumulative logLR.

For Tout choices, the neural activity did not converge (monkey J)

or the convergence was less pronounced (monkey E), suggest-

ing that activity of other neurons, presumably those with the

RFs aligned to Tout, precipitated termination of these decisions.

The effect of cumulative evidence on firing rate can be captured

at each time point by regressing the firing rate (associated with

one choice) against the cumulative logLR (at ts + 100 ms prior

to each time point; see above). For trials ending in Tin choices,

this modulation is no longer detectable before saccade initiation

(red arrows, Figure 4A insets; �190 ms and �50 ms before sac-

cades for monkeys E and J, respectively, p > 0.05), consistent

with a bound or threshold at �50 sp/s. We interpret the time

from the red arrows to saccade initiation as an average motor la-

tency from decision termination to saccade initiation. While

these latencies are supported by other analyses (e.g., decline

in firing rate variance), we feel they are at best rough approxima-

tions (e.g., for monkey J, there is a competing nadir in the regres-

sion slope to the left of the red arrow). Nonetheless, the loss of

evidence dependence is consistent with the idea that the deci-

sion process ends when the firing rate, averaged across a pop-

ulation of neurons, reaches a threshold level.

According to this hypothesis, the final shape that affects a de-

cision for Tin should be associated with an increase in the firing

rate. This prediction is supported by the analysis in Figure 4B,

which shows DFR values for each shape on the trials when the

shape was inferred to be the last effective shape leading to a

Tin choice (i.e., the N*th shape of the sequence). Not surprisingly,

the last shape was more often one of the four assigned positive

weights, and these continued to exert differential effects on the

DFR (fitted lines, Figure 4B; weighted regression; p < 0.05).

Shapes with negative weights are expected to terminate some

trials, because they happen to give rise to an increase in firing

rate, owing to noise, or because a decrement is compensated

by the time-dependent urgency signal (monkey E). Interestingly,

when a negatively weighted shape terminated the trial, the DFR

also tended toward positive, on average (12.6 ± 0.4 and 1.7 ± 1.0

sp/s for monkeys E and J, respectively; p < 10�100 and 0.09;

t test). Monkey J provides a less compelling case possibly

because this monkey terminated trials with a negatively

weighted shape less often (492 compared to 2,837 trials for mon-

key E). In principle, the DFR associated with termination should

never be negative, but this applies to the neural population, not
866 Neuron 85, 861–873, February 18, 2015 ª2015 Elsevier Inc.
to single trials from one neuron. These observations lend further

support to the hypothesis that decisions terminate when the LIP

firing rate reaches a threshold, which is detected, presumably,

by neurons downstream (Heitz and Schall, 2012; Lo and Wang,

2006).

Finally, it is worth noting that the graded representation of ev-

idence in Figure 4A, even when trials are grouped by choice, im-

plies that the graded responses evident in Figure 3A do not arise

as a consequence of averaging responses comprising different

mixtures of Tin and Tout responses. Thus, taken together, Figures

3A and 4A imply that LIP neurons represent an evolving decision

variable that will ultimately lead to a Tin or Tout choice.

Model
The observations from both behavioral and neural recordings

suggest that decisions are made when a sufficient amount of ev-

idence has been accumulated in favor of one of the alternatives.

For example, Figure 2E indicates that, on average, deliberation

ends when the absolute value of the cumulative logLR reaches

a common level, regardless of the number of shapes it takes to

achieve this level. Furthermore, the stereotyped firing rate before

Tin choices also supports a stopping rule based on the neural

representation of this cumulative evidence. However, there are

also anomalous observations that cannot be overlooked. Across

trials, there is considerable variation in the state of the cumula-

tive evidence at termination. This is evident in the SDs depicted

in the same Figure 2E. Indeed, the choice function displayed in

Figure 2D spans a range of cumulative evidence levels, which

at face value contradicts the premise that all decisions stop at

or very near a positive or negative threshold. We hypothesized

that these contradictory observations can be explained by the

noisy representation of logLR by LIP neurons and a termination

mechanism that operates on the LIP firing rate rather than

directly on logLR. The following neurally constrained model sup-

ports the plausibility of this hypothesis. See Supplemental

Experimental Procedures for mathematical details and support-

ing information.

We modeled the decision process as a race between two ac-

cumulators: one accumulating evidence in favor of Target A and

the other accumulating evidence in favor of Target B. The race

architecture allows us to apply parameters derived from neural

recordings (Churchland et al., 2008; Mazurek et al., 2003; Usher

andMcClelland, 2001; Wang, 2002), as follows. Each shape pro-

duces an expected increase or decrease in the firing rate, esti-

mated from the detrended average firing rates of the population

of recorded neurons (Figure 3B and Equation S1). These expec-

tations, hDrii, are assumed to be of opposite sign for the two ac-

cumulators (Figure 5B). We assume that each shape induces an

actual change in firing rate, Dri, that is determined by this expec-

tation plus unbiased noise (SD s
ε
; Figure 5B, orange distribution),

which is assumed to be independent in the competing process.

Sampled values of Dri scale a temporal impulse function, xðtÞ
(Equation S2), which also captures the delay and dynamics of

the response to single shapes (e.g., Figure 3A). The noisy im-

pulses are integrated and added to a time-dependent urgency

signal, uðtÞ, which is derived from the neural recordings (Equa-

tion S4, Figure S2C). The process starts from an initial rate

of v0 (20 and 30 sp/s for monkeys E and J, Figure 3A) and
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Figure 5. A Bounded Accumulation Model Informed by the Neural

Recordings

Two competing neural populations with response fields at choice target A or B,

respectively, accumulate a noisy representation of evidence bearing on the

likelihood that choosing A or B will be rewarded. The panels establish the logic

of the model simulation in stages via an example trial in which a correct de-

cision for A is made with RT = 1.3 s, based on the evidence fromN* = 4 shapes.

The fifth shape does not affect the decision in this example.

(A) At the beginning of each trial, a reward is assigned randomly to Target A or

to B. The assignment determines the sampling distribution for the shapes in

the trial. For example, if the reward were assigned to Target A, the shapes

would be sampled from the distribution in red, perhaps giving rise to the

sequence of shapes: star, pacman, wedge, hourglass, and pacman.

(B) The presentation of each shape gives rise to a change in firing rate in each

of the racing accumulators, termed population A and B. The expected Dr for

population A is taken from the detrended data (Equation S1); the expectations

are the opposite sign for population B. These expectations are corrupted by

unbiased noise, represented by the Gaussian distributions with standard de-

viation s
ε
(error bars). For example, the pacman presented as the fifth shape

(orange shading) gives rise to a change in firing rate in population A, modeled

as a random draw from the orange Gaussian distribution on the left. Population

B undergoes a change modeled as an independent draw from the orange

Gaussian on the right. The corrupted samples scale a dynamic template, x(t)
terminates when one of the accumulators reaches a threshold

firing rate level, q (50 sp/s for both monkeys), thereby deter-

mining the choice and the time of decision termination on a trial.

The measured reaction time is the decision time plus a gamma

distributed delay, tm, with mean htmi adopted from the analysis

in Figure 4A, and SD sm. We fit the model to approximate the

choice and RT distributions for each monkey (Figure 6A; Equa-

tion S5) using just two free parameters: the noise terms associ-

ated with the evidence-induced increments in firing rate and

the motor latency (s
ε
and sm; Table 1).

As shown in Figure 6, themodel reproduces the key behavioral

measurements. Importantly, the model resolves the anomalies

mentioned above. It gives rise to the consistency of mean cumu-

lative logLR irrespective of RT, suggesting a terminating bound,

while at the same time explaining the variation in this same quan-

tity across trials (Figures 6B and 6C). It does so by postulating

that decisions terminate when a population firing rate reaches

a threshold, and these firing rates are noisy reflections of the un-

derlying evidence.

The model also explains a trend, evident in monkey J, that the

magnitude of cumulative logLR increases with the number of

accumulated shapes at the end of decision (Figure 6C). The intu-

ition is as follows. Imagine a pair of trials that share the same

exact sequence of shapes, and suppose further that in the

absence of noise this sequence ought to lead to choice A after

three shapes. If the shapes are represented by noisy quantities,

then it is possible that one trial leads to choice A after three

shapes, whereas a fourth shape is required on the other trial.

The cumulative logLR will tend to be greater on this trial because

it is highly likely that the fourth shape was assigned positive

logLR. Such an effect would be mitigated by the urgency signal

measured in monkey E.

Similar reasoning guides interpretation of another potentially

misleading observation: shapes presented nearer to decision

termination have greater leverage on choice than shapes pre-

sented earlier in the sequence (Figure 6D). Again, the explanation

relies on the noisy representation of logLR. For a trial to extend

through many shapes, it is likely that those shapes presented

in earlier epochs changed the firing rate by a smaller magnitude

than those presented in later epochs. As shown by the red curve

(Figure 6D), the increased leverage of shapes presented in later

epochs is the expected trend for bounded noisy evidence accu-

mulation. It should not be construed as support for forgetting or

‘‘leaky accumulation.’’ One could argue that the nonterminating,
(bottom insets), which captures the sensory delay and rise time of the LIP

response.

(C) The evidence-dependent activity, S, is the running sum of these scaled

templates. The portion of the response that would be contributed by the fifth

shape is shown as an orange curve.

(D) The time-dependent urgency signal, u(t), is added to S in each neural

population. This undoes the detrending step in (B).

(E) The urgency signal pushes both accumulations S (thin lines) upward to

establish v(t) (thick lines). When v(t) in either population reaches the threshold

(q) (marked by a red star), the model chooses the corresponding target (Target

A in this example). Notice that it is based only on the first four shapes. The RT

occurs after a motor delay (tm), a random variable drawn from a Gamma

distribution (blue).

See also Figure S2 and Supplemental Experimental Procedures.
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Figure 6. Comparison of the Model to Experimental Data

The data (black) and model predictions (red) for monkeys E and J are shown in

the left and right columns of graphs, respectively. All but two parameters of the

model are derived from the neural recordings (see Table 1). RT distributions in

(A) were used to fit these parameters. Red traces in (B)–(E) are predictions.

(A) Reaction time distributions. Data are the same as in Figure 2A but are split

by correct and error trials.

(B) Dependence of choice on the cumulative evidence supplied by the

sequence of shapes. Data are the same as in Figure 2D.

(C) Mean and SD of the cumulative logLR at the end of decision. Data are the

same as in Figure 2E.

(D) Influence of shapes on choice as a function of time (shading indicates SE).

Data are same as in Figure 2B.

(E) Time-dependent accuracy (TDA). Data are the running proportions of

correct choices sorted by RT. Values are plotted at the mean RT of the 300

trials constituting the running mean. The decreasing TDA for monkey E is

868 Neuron 85, 861–873, February 18, 2015 ª2015 Elsevier Inc.
lower bound in our model leaves open the potential for another

source of information loss, but simulations that permit negative

firing rates demonstrate that this is not a viable explanation of

the pattern of weighting in Figure 6D (data not shown). Thus,

we find no evidence for memory leak or sources of noise beyond

those accompanying the evidence samples, consistent with a

recent study in rat (Brunton et al., 2013).

The model also furnishes insight into the differences between

the behavioral patterns exhibited by the two monkeys.

Compared to monkey J, monkey E appears to derive smaller

changes in firing rate—relative to noise—from the shapes

(Table 1). However, this monkey compensates by applying a

more conservative bound. That is, the difference in firing rate

from beginning of evidence accumulation to the terminating

bound is larger in monkey E, consistent with the longer RT, or

equivalently, the larger number of sampled shapes, on average.

This excursion also incorporates an evidence-independent,

time-dependent ‘‘urgency’’ signal, uðtÞ (Figure 5D), which re-

duces the amount of evidence required to terminate the deci-

sion, and thus explains the decline in accuracy as a function of

RT (Figure 6E). Interestingly, these differences led monkey E to

a higher overall accuracy rate (85% versus 80% correct) but to

similar reward rates (0.183 versus 0.195 s�1).

Finally, although it is no surprise that the neurally inspired

model recapitulates the neural responses (Figure S4A), it ex-

plains an otherwise puzzling feature of these data. Recall that

the relationship between firing rate and cumulative logLR is

approximately constant for the first five shape epochs (Fig-

ure 3A). However, for trials with longer RT, the relationship tends

to flatten (Figure S4B). This occurs without any leakage but is

instead consistent with the accumulation of noisy evidence to

a threshold. That is, the monkeys tended to use more shapes

on those trials in which the evidence affected the firing rate by

a smaller magnitude than average. The correspondence be-

tween model and physiology reassures us that the model archi-

tecture and estimates we obtained were sufficient to capture the

main features of the data. Thus, the model supports the hypoth-

esis that an approximation to the accumulation of logLR, as rep-

resented by neurons in area LIP, explains the pattern of choice

and RT manifested by the two monkeys.

DISCUSSION

When a decision is based on samples of evidence of different

reliability, then it is rational to give more weight to the more reli-

able cues (Ernst and Banks, 2002; Fetsch et al., 2012; Jacobs,

1999; Knill, 2007). If the evidence arrives sequentially and more

is expected, then the decision maker might also decide when

to terminate the process and commit to a choice. Here, the

notion of rationality is less well prescribed, as it depends on

the desired level of accuracy and the cost of time. In many in-

stances, the speed-accuracy tradeoff is thought to be explained
explained by the evidence-independent ‘‘urgency’’ signal that is added to the

representation of cumulative evidence. Lines are maximum likelihood fits to

the data and model simulation using the individual trials (not running means)

ordered by RT.

See also Figure S4.



Table 1. Model Parameters

Fitted

Parameters Physiologically Derived Parameters

s
ε

sm ts < tm > v0 q

Monkey E 5.9 sp/s 39 ms 200 ms 204 ms 20 sp/s 50 sp/s

Monkey J 8.3 sp/s 69 ms 130 ms 57 ms 30 sp/s 50 sp/s
by a commonmechanism in which evidence is accumulated to a

threshold level or bound. Previous studies of perceptual decision

making have demonstrated a neural correlate of both evidence

accumulation and termination in area LIP (Gold and Shadlen,

2007). In these studies, the reliability of evidence was statistically

stationary during a trial, and as best we can tell, all samples of

evidence during the course of a single decision were weighted

identically. On the other hand, while many behavioral studies

have demonstrated a rational combination of cues of different

degrees of reliability, nearly all such studies present the cues

simultaneously. The main exception is the study upon which

the present experiment is based (but see Wyart et al., 2012).

Our previous study (Yang and Shadlen, 2007) demonstrated

that monkeys were capable of combining evidence from a

sequence of four shapes, like those used in the present experi-

ment, by assigning greater weight to the more reliable cues.

Although the LIP responses in that study appeared to encode

the cumulative evidence from the sequence of shapes, this

was the only support for the conjecture that themonkeys actually

reasoned sequentially from the four samples. The monkey was

required to make its choice only after all four shapes were visible

on the display.

The present study enforced a sequential strategy in two ways.

First, the task required integration in time because only one

shape was visible at a time. Second, the monkey was free to

terminate each trial when it had seen enough shapes. The behav-

ioral data indicate that shapes from early epochs influenced the

monkeys’ choices, even on trials in which such shapes were fol-

lowed by many more shapes (Figure 2B). Moreover, the speed

and accuracy of the monkeys’ decisions were well described

by bounded evidence accumulation as shown in our modeling

exercise. Thus, monkeys demonstrated a capacity to form deci-

sions based on sequential analysis of evanescent cues of varying

reliability.

A well-known strategy to solve this class of decisions, known

as the sequential probability ratio test (SPRT) (Barnard, 1946;

Good, 1979; Wald, 1947), would place termination criteria on

the cumulative logLR supplied by the shapes. The level of these

criteria determines the error rates and the distribution of the

number of shapes supporting decisions, across trials. In fact

SPRT is optimal in the following sense. Given a desired error

rate, it ensures that the number of samples is minimized on

average (Wald and Wolfowitz, 1948). A natural candidate for

‘‘desired error rate’’ is one that would maximize the rate of

rewarded decisions over many trials (Gold and Shadlen, 2002;

Simen et al., 2009). Neither of the monkeys achieved this optimal

level, but they came close—monkeys E and J achieved a reward

rate that is 86% and 92%, respectively, of the maximum

possible. However, it is probably incorrect to assume that the

monkeys aimed to maximize the rate of rewarded decisions.
As has been previously shown, decision time itself appears to

be costly to monkeys. For example, in some perceptual deci-

sions, when stimuli are presented for durations exceeding 0.5

s, subjects tend to ignore late information, as if performing a

RT task (Kiani et al., 2008; Tsetsos et al., 2012). This time

cost can be realized by collapsing the termination bounds as

a function of time, or equivalently, by adding a monotonically

increasing signal, termed urgency, to the accumulated evi-

dence represented by competing accumulators (Churchland

et al., 2008; Cisek et al., 2009; Ditterich, 2006; Drugowitsch

et al., 2012; Hanks et al., 2014). In LIP activity, we observed

the latter: the additive urgency. A behavioral signature of such

a process is the declining accuracy as a function of RT for

monkey E (Figure 6E). The neural correlate of this is the gradual

rise in firing rate that is apparent even when the accumulated

evidence favored neither choice (Figure 3A, green traces,

monkey E).

Other explanations for the less than optimal performance are

more informative about the underlying process. The most

obvious is that neither monkey assigned the eight shapes the

correct weights, although these anomalies were concentrated

on the shapes that were shown least often. This led to system-

atic error in the choices, although the effect was modest. For

example, if we assume an accumulation of weights like those

shown in Figure 2F, without noise, and apply the optimal bound,

the overall rate of reward would be reduced by only �1%. This

reduction is due to imperfect assignment of relative weights (Fig-

ure 2F) rather than the absolute values of weights. Therefore, the

more important discrepancy, highlighted by the model, is that

the neural representation of accumulated evidence is corrupted

by noise. This introduces a diminution in the signal-to-noise ratio

that can only be overcome by increasing integration times (e.g.,

a higher bound setting) at the cost of more time per trial. One

might argue that the brain is incapable of achieving an optimal

solution to this problem, but given limitations in training and

proximity to optimal performance, we tend to take the rosier

view that despite limitations of biology (e.g., noisy neurons)

and learning, the brain can achieve a reasonable approximation

to optimal cue combination.

We have mainly focused on aspects of the decision process

that were shared by the two monkeys, but the model also sheds

light on differences between themonkeys, which may have been

induced by their training histories. We introduced a minimum

delay to reward during training of monkey E in order to

discourage very fast RT, which is the natural tendency of many

monkeys on RT tasks (e.g., see Roitman and Shadlen, 2002).

We suspect that this might have induced some procrastination

between decision termination and saccade initiation (i.e., tm) in

this monkey. In addition, monkey E could have increased its

reward rate, albeit slightly (�1%), by accumulating evidence

without bounds during the minimum delay. An approximation

to this strategy might account for the time-dependent urgency

signal evident only for monkey E, because the addition of u(t)

to both accumulators is equivalent to decreasing the bound

height as a function of time. We do not know if this training differ-

ence also led monkey E to give less weight to the shapes or if

instead the lower signal to noise led to a compensatory change

in the termination criterion.What we can say, however, is that the
Neuron 85, 861–873, February 18, 2015 ª2015 Elsevier Inc. 869



combination of bound and weight conferred monkey E with the

better accuracy than monkey J.

Another difference between the monkeys can be attributed

more clearly to a difference in their training history. Monkey J

had been trained extensively on a version of the task in which

the shapes were associated with colored targets. In an earlier

report, there was a hint that its neural responses were more reli-

able when the red choice target was displayed in the RF (see Fig-

ure S8 in Yang and Shadlen, 2007). This trend evolved during

training on the RT task such that the monkey now appears to

use only one population of LIP neurons on this task. That is,

when the green target was in the RF, although the monkey per-

formed the task equally well, the neurons did not modulate their

activity during the evidence accumulation phase of the task (Fig-

ure S3A). This calls for a qualification of themodel in Figure 5. For

this monkey, we have no neural correlate of a terminating

threshold for green target choices. One possibility is that such a

process exists in another decision-related brain area that is less

associatedwith eyemovement planning per se (e.g., dorsolateral

prefrontal cortex; Brody et al., 2003; Kim and Shadlen, 1999;

Romo et al., 1999; Wallis et al., 2001). Another possibility is that

monkey J performed the task by deciding for or against the red

choice target. In that case, the termination rule for green might

be a lower bound on the firing rate of LIP neurons that support

red. Indeed, this lower bound might be sensed by the neurons

with the green target in their RF, since they exhibit presaccadic

responses before Tin choices (Figure S3B). However, the neural

activity depicted in Figure 4A—that is, the neurons with the red

target in RF—does not provide compelling evidence for a lower

bound on Tout trials (i.e., green choices): the firing rates continue

to reflect the accumulated evidence up to saccade initiation.

We considered and rejected a variety of alternative models to

explain the monkeys’ behavior. First, the monkeys did not base

their choices or decision times on the occurrence of particular

shapes. With this strategy, the subjective weight should be

zero for all shapes except for those particular ones, whereas

each unique shape was assigned a non-zero weight with

an appropriate sign and rank order (Figure 2F). Second, the

monkeys did not rely on evidence conferred in a particular epoch

during a trial because shapes impacted the choice whether

presented early or late (Figure 2B). Third, decision times were

not dictated by some type of deadline that is independent of

the state of the cumulative evidence. This idea would not explain

the consistent level of evidence at termination (Figure 2E; see

Figure S1B for further explanation).

That said, the model we propose is undoubtedly incomplete.

We have already mentioned the absence of a signature of deci-

sion termination on green target choices (monkey J). More

importantly, we do not know how themonkeys learn to associate

differential weights to the 8 shapes, and it is not clear how the

appearance of a shape leads to an increment or decrement in

the LIP firing rate that is of the appropriate magnitude for that

shape. Comparison to the well-studied random dot motion

task is instructive. In that task, neurons in extrastriate area MT

(V5) represent the momentary sensory evidence, and the accu-

mulation is thought to be of the difference in firing rates of

such neurons tuned to opposite directions. The noisy difference

signal is itself proportional to units of logLR (Gold and Shadlen,
870 Neuron 85, 861–873, February 18, 2015 ª2015 Elsevier Inc.
2001). We assume that the shapes are differentiated in extrastri-

ate cortical areas in the ventral stream (DiCarlo et al., 2012; Ta-

naka, 1996), but it is hard to conceive of an analogous difference

between pro- and anti-pentagon neurons. Instead, it has been

suggested that LIP neurons acquire evidence-dependent activ-

ity by learning appropriate synaptic weights applied to shape-se-

lective inputs (Soltani and Wang, 2010; Rombouts et al., 2012).

What seems to be required is an operation resembling mem-

ory retrieval in which the shape is associated with a quantity

that bears on another process. In memory retrieval, this quantity

bears on a decision about satisfaction of a match (e.g., simili-

tude) (Ratcliff, 1978; Ratcliff and McKoon, 2008; Shadlen and

Kiani, 2013), whereas in our experiment it bears on the relative

merit of a left/right or red/green choice. Perhaps this insight

bears on the success of sequential sampling models to a variety

of cognitive tasks, includingmemory retrieval, that do not appear

to involve any obvious need to integrate independent samples of

evidence as a function of time.

EXPERIMENTAL PROCEDURES

Two male rhesus monkeys (Macaca mulatta) were implanted with a head fixa-

tion device and a recording chamber above the intraparietal sulcus.

Throughout training and recording sessions, eye positions were recorded by

an infrared video-tracking system (EyeLink, SR Research; sampling rate,

1,000 Hz). Timing of task-related events was controlled by a real-time com-

puter data acquisition system (Hays et al., 1982). Visual stimuli were displayed

on a CRT monitor (frame rate 75 Hz) controlled by MATLAB (MathWorks) and

the Psychophysics Toolbox (Brainard, 1997). All animal procedures complied

with the National Institutes of Health Guide for the Care and Use of Laboratory

Animals, and were approved by the University of Washington Animal Care

Committee.

Task

Monkeys were trained to perform a choice-reaction time task in which they

evaluated a sequence of shapes to choose the better of two saccade targets.

The monkeys were trained extensively to interpret eight unique shapes as ev-

idence bearing the likelihood that one or the other choice target would furnish a

reward (Figure 1B). Monkey E learned that half of the shapes favored the left or

right target, whereas monkey J learned that half of the shapes favored the red

or green target. For ease of presentation we refer to these targets as Targets A

and B, and in both situations one or the other target was placed in the RF of the

LIP neuron under study.

After acquiring fixation on a central fixation point (FP), two choice targets ap-

peared in the periphery equidistant from the FP. After a random delay (0.2–

0.5 s, mean 0.3 s for monkey E; 0.5–3 s, mean 0.9 s, for monkey J), a sequence

of highly visible shapes appeared every 250 ms centered on a vertex of an

invisible 3� 3 3� grid centered on the FP. The shapes were approximately

1.2� 3 1.2�, high contrast line art with equal perimeter (Figure 1B). The shapes

were displayed sequentially, until the monkey initiated a saccade to one of the

choice targets. Successive shapes were not shown in the same grid location.

The computer randomized which target would be rewarded on each trial, and

sampled the eight shapes accordingly (Figure 1B). Thus, on any one trial, any

of the eight shapes could be displayed, but four were more likely, depending

on whether the reward was assigned to Target A or B.

After the first shape’s onset, the monkey was allowed to make a saccadic

eye movement to one of the targets to indicate its choice. The time from the

first shape’s onset to the time of saccade initiation defines the reaction time

(RT) in each trial. Monkeys received a liquid reward for all correct choices so

long as the gaze remained on the choice target for 0.2 s (saccade validation).

Monkey J received this reward 1.3 s after saccade validation. For monkey E,

the interval to reward depended inversely on RT—a minimum of 1.8 s from

onset of the first shape (e.g., immediately after validation for all RT > 1.6 s).

Similar techniques have been used previously to counter monkeys’ natural



tendency to respond quickly on choice-reaction time tasks (Hanks et al., 2014;

Roitman and Shadlen, 2002). Upon saccade initiation, no more shapes were

shown, and the screen was blanked after the saccade hold period. The next

trial followed an inter-trial interval (TITI) defined as the time from saccade initi-

ation to the display of the FP for the next trial. For monkey J, TITI was 2.1 s for

correct trials and 3.9 s for error trials. For monkey E, TITI for correct trials was

adjusted based on RT: TITI was 2.1 + (1.8 – RT) s if RT was shorter than 1.8 s,

and 2.1 s otherwise. TITI for error trials was 5.4 s.

Targets A and B refer to the left and right choice target for monkey E and the

red and green choice target formonkey J. Formonkey J, either the red or green

target was randomly designated as Tin in each trial. We introduced the spatial

version of the task formonkey E after preliminary analyses indicated that half of

the trials frommonkey J were uninformative (see Figure S3). For monkey J, we

included two extra ‘‘trump’’ shapes that the animal had been trained on previ-

ously. These shapes, though rarely shown (�2% of trials), would guarantee

reward at one or the other choice target. However, the monkey did not always

terminate decisions upon seeing these shapes, consistent with our previous

inference that the monkey did not learn the significance of these shapes (Fig-

ure 1C and Figure S2B in Yang and Shadlen, 2007). Trials incorporating these

‘‘trump’’ shapes are not included in this report. Wemention it here because the

differences in training might bear on the interpretation of the differences in re-

sults from the two monkeys.

Both monkeys were initially trained extensively on a four-shape version of

the task (>200,000 trials) (see Yang and Shadlen, 2007). For the RT version

of the task, monkey E was trained for �20,000 trials (�2 months) and monkey

J was trained for �111,000 trials (�6 months). We commenced neural

recording when the decision speed and accuracy achieved stability. Monkeys

E and J performed�44,000 trials (�5 months) and�93,000 trials (�4 months),

respectively, during the period of recording (including practice days when we

did not record neural data).

Data Acquisition and Neuron Selection

Quartz-platinum/tungsten electrodes (Thomas Rec./Alpha-Omega with 1–3

MU impedance) were used for recording. Recorded signals from the elec-

trode were amplified and bandpass filtered (150 Hz–8 kHz for monkey E;

0.1 Hz–10 kHz for monkey J) before action potentials (spikes) were de-

tected by a dual voltage-time window discriminator (Plexon and Bak

Electronics).

We recorded from neurons in the ventral division of the lateral intraparietal

area (LIPv) (Lewis and Van Essen, 2000) in the right and left hemisphere for

monkeys E and J, respectively. Recording sites were targeted using a postop-

erative MRI displaying the recording chamber and grid. We registered these

images with the standard MRI supplied with the CARET software (Van Essen,

2002) and targeted the posterior third of the flat-map representation of LIPv,

where, in our experience, clusters of neurons with appropriate RF locations

and spatially selective persistent activity are abundant (Patel et al., 2014).

We then identified LIPv using physiological criteria and selected isolated single

units that showed a robust and spatially selective persistent activity while the

monkeys waited to execute a saccadic eye movement toward a remembered

target location during the delay period of the memory-guided saccade task

(Hikosaka andWurtz, 1983). This property was common in the region of the in-

traparietal sulcus�4–8 mm below the cortical surface. The criterion was qual-

itative, but it was typically confirmed by interleaving memory-guided saccades

during the main experiment. Of 196 units encountered in putative LIPv, 104

cells exhibited robust persistent activity. Of these, 67 cells were held for suffi-

cient trials (>80) for inclusion in the dataset (38 and 29 cells for monkeys E and

J, respectively).

Analysis of Behavioral Data

We analyzed 27,201 and 17,994 trials accompanying the neural recordings

frommonkeys E and J, respectively. We applied several logistic regression an-

alyses to estimate the leverage of the shapes on the probability that the mon-

key would choose Target A [P(A)], as a function of a sum of leverages,Q, which

might affect P(A) monotonically:

PðAÞ= 1

1+ 10�Q
: (Equation 1)
To determine whether shapes that appeared in a specific time window

affected the monkey’s choices (Figure 2B), we considered all the other shapes

shown in the trial as confounders:

Q= b1wt + b2W (Equation 2)

where wt is the assigned logLR of shapes that appeared during the time

window of interest, W is the cumulative logLR of the rest of the shapes

that appeared during the trial. b1 and b2 are the fitted coefficients, where

b1 quantifies the subjective leverage of shapes in the specific time window

after accounting for the influence of other shapes. To estimate the

leverage of shapes presented at the beginning of the trial, we obtained wt

from logLR of the kth shape (k = 1, 2, .) (Figure 2B, left). To estimate the

leverage of shapes presented at time points, t, relative to the saccade, we

obtained wt only from trials in which a shape appeared within ±10 ms of t

(Figure 2B, right). For both estimates, we pooled trials across all RT. Stan-

dard errors (shading in Figure 2B) are uncorrected for multiple observations

and data overlap.

We also performed a variant of this analysis that incorporated a constant

(bias term) at each time point. It is difficult to justify an independent bias at

each time point, but it is reassuring that the results are consistent with the

one we report based on Equation 2 (data not shown).

To estimate the subjective weight that the monkey assigned to each of the

eight shapes (Figure 2F), we fit eight coefficients:

Q=
X8

i =1

bini (Equation 3)

where ni is the count of each unique shape during a trial up to the N*th shape.

The fitted logistic coefficients (bi) quantify the leverage of each unique shape in

units of logLR.

For the time-dependent accuracy functions (Figure 6E), we constructed

running ‘‘proportion correct’’ from trials (or simulated trials) sorted by RT.

The lines fit to the data andmodel predictions used individual trials (not running

proportions). These lines and all logistic models were fit to the data as gener-

alized linear models (GLMs) assuming binomial error.

Analysis of Physiological Data

Owing to differences in the training and behavior, all analyses of neural

responses were conducted separately for the two monkeys. For monkey J,

we include only trials in which the red choice target was in the neuron’s RF

(8,928 trials). As shown in Figure S3, when Tin was green, the neurons did

not modulate their firing rate before the peri-saccadic epoch.

We calculated the firing rate of LIP neurons by convolving spike trains

with a causal kernel: aðtÞ= t=t2K,expð�t=tKÞ; ctR0, where tk is 10 ms.

We formed population averages from these traces. To establish the epoch

in which a shape influences the LIP response, we examined the time course

of the response to the first shape. We first identified the time, ts, when

the responses begin to diverge as a function of evidence. We estimated

this delay by dividing all trials into four groups based on the first shape’s

logLR ([–0.9, –0.7], [–0.5, –0.3], [0.3, 0.5], [0.7, 0.9]), and measuring when

the response curves of the four groups started to diverge after the first

shape onset. Since shapes were presented every 250 ms, the epoch asso-

ciated with the kth shape in a sequence extends from ts + 250ðk � 1Þ to

ts +250k ms. As is evident from Figure 3A, it takes �100 ms for the

response to approximate a steady level. Therefore, we used the last

150 ms of this epoch to measure the average firing rate (i.e.,

½ts + 100; ts + 250� ms after presentation of the kth shape; Figure 3A gray

bars on the abscissa).

We quantified the leverage of each shape in a sequence (j = 1 .. k) on the

firing rate in the kth epoch using linear regression:

FRk = b0 +
Xk

j = 1

bjwj (Equation 4)

where wj is the assigned logLR of the jth shape in the sequence. To avoid

contamination of activity associated with saccade preparation, FRk excludes

activity induced by the N*th shape. In the example cited in the Results, the

null hypothesis is H0: b1 = 0 (weighted regression, t test).
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The change in the firing rate induced by the kth shapewas estimated from the

firing rates relative to the one preceding it:

DFRi;k =FRi;k � FRi;k�1 (Equation 5)

where FRi;k is the average firing rate induced by shape i (i = 1 .. 8). For the first

shape epoch, the baseline firing rate ðFR0Þwas estimated from the mean firing

rate in the epoch from onset of the first shape to ts. We computed the average

change in firing rate for each unique shape i by averaging across k epochs,

DFRi = hDFRi;kik , where h/ik denotes the mean across epochs. The DFRi are

displayed in Figure 3B. To estimate DFRi,N* induced by the N*th shape

(Figure 4B), we excluded data after saccade initiation and trials in which N* = 1.
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