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SUMMARY

Cognitive capacities afford contingent associations
between sensory information and behavioral
responses. We studied this problem using an
olfactory delayed match to sample task whereby a
sample odor specifies the association between a
subsequent test odor and rewarding action. Multi-
neuron recordings revealed representations of the
sample and test odors in olfactory sensory and
association cortex, which were sufficient to identify
the test odor as match or non-match. Yet, inactiva-
tion of a downstream premotor area (ALM), but not
orbitofrontal cortex, confined to the epoch preceding
the test odor led to gross impairment. Olfactory deci-
sions that were not context-dependent were unim-
paired. Therefore, ALMdoes not receive the outcome
of a match/non-match decision from upstream
areas. It receives contextual information—the iden-
tity of the sample—to establish the mapping be-
tween test odor and action. A novel population of py-
ramidal neurons in ALM layer 2 may mediate this
process.

INTRODUCTION

Brain functions deemed cognitive exhibit complexities that

extend an organism’s behavioral repertoire beyond simple

sensory-response associations, motor programs, and instructed

actions. Cognitive functions exploit contingent, hierarchical pro-

cesses of decision-making and executive control. For example,

instead of choosing an action, a decisionmight lead an organism

to choose a strategy, switch tasks, or make yet another decision.

Cognitive functions may also transpire over flexible timescales

without precipitating an immediate behavior, as when a decision

is based on information acquired at some moment and

combined with information acquired later.

Neural mechanisms of decision-making and executive control

have been studied primarily in the parietal and prefrontal cortex

of nonhuman primates. These studies focused mainly on

neurons that exhibit responses over long timescales and impli-
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cated processes such as working memory (Funahashi et al.,

1989; Fuster and Alexander, 1971), planned action (Cisek and

Kalaska, 2005; Evarts and Tanji, 1976; Snyder et al., 1997),

behavioral state (Harvey et al., 2012; Kadohisa et al., 2013),

representation of stimulus qualities (Freedman and Assad,

2006; Romo et al., 1999), and reasoning (Gold and Shadlen,

2007; Yang and Shadlen, 2007). The study of the neural mecha-

nisms of perceptual decision-making may therefore provide an

initial logic for higher-order cognition. This will require an under-

standing of neural circuits at a level that is not yet possible to

achieve in nonhuman primates. Thus, there has been growing

interest in the pursuit of elementary cognitive functions in the

mouse, for which genetic and viral tools for circuit manipulation

abound (Carandini and Churchland, 2013; Luo et al., 2018). The

challenge is to find simple behaviors within the mouse repertoire

that have the potential to elucidate more complex cognitive

functions.

We developed a simple task that allows us to study rudiments

of executive control and decision-making in a mouse. The task is

a variant of the logical exclusive or (XOR) problem, realized as an

olfactory delayed match to sample task (DMS; Figure 1) (Liu

et al., 2014). The mouse is exposed to a sample odor, either SA

or SB, and, after a short delay, receives a test odor, TA or TB.

To receive a reward, the mouse must lick to the left if the sample

and test odors are the same and to the right if they are different.

The XOR problem interests computational neuroscientists

because it cannot be solved by a simple linear classifier. Our in-

terest was in the possibility that it could be solved by a hierarchy

of decisions. For example, themousemight use the sample odor

to decide on the appropriate association between the test odor

and the correct behavioral response—a left or right lick.

We hypothesized that this hierarchical control might be solved

by changing the configuration of cortical circuitry in the premotor

cortex, in the area anterolateral motor cortex (ALM). Studies from

Svoboda and colleagues have shown that ALM plays an essen-

tial role in behaviors in which a sensory cue serves as an instruc-

tion to lick to the left or right (Guo et al., 2014a; Li et al., 2015;

Svoboda and Li, 2018). They showed that many neurons in

ALM can hold such an instruction—or the plan to lick to the left

or right—in persistent activity through a delay period. In the

DMS task we study, the sample odor cannot provide an instruc-

tion to lick left or right, only a context to interpret the test odor.

Thus, the mouse cannot plan a lick until the arrival of the test

odor after the delay. We investigated three hypotheses for the
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Figure 1. Lick-Left Lick-Right Olfactory Delayed Match to

Sample Task

(A) Task structure. Mice are presented with two odorants (A, pinene; B,

hexenol) separated by a delay and must decide whether they are the same

(match) or different (non-match). The two odors create four unique pairs or trial

types. Match trials are rewarded on the left port and non-match on the right

(see STAR Methods).

(B) An example behavior session from awell-trained animal. The four trial types

are randomly presented in the session but grouped here for plotting. Each row

is a trial. The green, red, and gray markers on the left side of each trial denote,

respectively, the outcome of correct, error, and no choice. The A and B odors

are indicated by the light blue and light red shadings. The magenta and yellow

tick marks are the left and right licks, respectively. Mice were trained to

suppress their premature licks during the sample and delay epochs. The

sample and test epochs are 0.5 s each and the delay is 1.5 s.

(C) The proportion of correct trials in well-trained animals. Each colored line

represents data from one animal and the black line is the mean of all animals

(n = 41).

(D) The DMS task is a variant of the logical XOR problem. The logical outcome

and the lick response depend on whether two bits of information are the same

or not (TA|B, test odor A or B; SA|B, sample odor A or B).

See also Figure S1.
involvement of ALM in this task. First, areas upstream to ALM

could solve the match/non-match discrimination and project

this solution to ALM, which organizes an appropriate lick
response. Second, ALM could decode upstream representa-

tions that combine sample and test odors to select the appro-

priate response. Third, ALM could receive information about

the identity of the sample odor to instantiate the appropriate

response to the test odor. We provide experimental evidence

for this third possibility. We show that the sample odor is repre-

sented in ALM itself, and that this representation allows ALM to

associate the test odor with the appropriate lick response.

RESULTS

Micewere trained to compare a sample and test odor, separated

by a delay, and to report their decisions of match or

non-match by licking to the left or to the right, respectively (Fig-

ures 1A, S1A, and S1B). The lick-left, lick-right design requires

distinct actions to report both match and non-match. Impor-

tantly, animals cannot solve the task until they smell the test

odor. For most experiments, we used the same two odors,

(+)-a-pinene and cis-3-hexen-1-ol (odors A and B, respectively)

on all trials. Animals were trained to suppress their premature

licks before test onset (Figure 1B) and do not appear to use licks

to represent and remember the sample odors (Figures

S1C–S1E).

Mice performed the task with a median accuracy of 90% (Fig-

ure 1C). When challenged with a novel pair of odorants after

training with pinene and hexenol, mice performed at chance level

with a high no-choice rate (Figure S1F). This suggests that the

mice failed to generalize the match/non-match rule. Rather, they

learned that test odor TA instructs lick left if preceded by sample

odor SA (AA trial), whereas it instructs lick right if precededby sam-

ple odor SB (BA trial). The complementary logic holds for the test

odor TB (Figure 1D). This flexible association between test odor

and licking response is contingent on the sample odor identity,

which must be represented through the delay in order to affect

the match/non-match decision.

We first characterize the neural representation of the sample

and test odors by surveying neural responses in the Piriform

cortex (Pir), the orbitofrontal cortex (OFC), and the ALM while

the mouse performed the DMS task. We wished to determine

whether each of these areas contain a persistent representation

of the sample odor and whether they encode the test odor in a

way that might inform the match/non-match decision. As

detailed in the next section, the findings support the possibility

that the match/non-match decision can be established within

Pir and OFC and then transmitted to the ALM to render the lick

response. We then test this model by inactivating ALM during

the sample and delay epochs of the task. We find evidence

against this model and instead establish a necessary role

of ALM during the sample and delay epochs. Finally, using

2-photon Ca imaging, we expose a class of neurons in superficial

ALM that could mediate the circuit changes required to allow

ALM to associate the test odor with an appropriate lick response.

Representations of Sensory and Motor Signals in Pir,
OFC, and ALM
We performed electrophysiological recordings in brain areas

likely to be involved in the DMS task: Pir, OFC, and ALM. Pir is

a primary olfactory sensory area (Giessel and Datta, 2014;
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Sosulski et al., 2011) that encodes odor identity. Pir projects to

OFC, a higher-order associative area that is thought to encode

value, expectation, and working memory (Bechara et al., 2000;

Mainen and Kepecs, 2009; Padoa-Schioppa and Assad, 2006;

Ramus and Eichenbaum, 2000). Figures 2A–2C provide exam-

ples of neurons that respond selectively to (1) one or the other

sample odor during the sample and delay periods (1st and 2nd

columns); (2) one or the other test odor (3rd column); and (3)

one or the other choice (4th column). They also show the strength

of the selectivity across all the neurons recorded. The selectivity

index quantifies the degree to which the distributions of firing

rates to the two conditions (e.g., odor A or B) are non-overlap-

ping (see STAR Methods). In what follows we refer to a neuron

as selective if the difference in themean responses is statistically

reliable (indicated by shading in Figures 2D–2G).

More than a third of neurons (37%) in Pir responded selectively

to either odor A or odor B during the sample epoch (Figures 2A

and 2D). Of these, 71% exhibited the same odor preference dur-

ing the sample and test epochs (Figure S2A), suggesting that

these neurons represent sensory information and encode odor

identity. Most of the sample-selective neurons responded tran-

siently (e.g., Figure 2A, left most panel), but 28% exhibited

persistent selectivity through the delay (e.g., Figure 2A, 2nd panel

from left; Figure S2B). These neurons can therefore inform down-

stream neurons of the identity of the sample odor at the time of

test. A subset of Pir neurons responded to the test odor in a

way that depended on the identity of the sample odor (Fig-

ure S2C; STAR Methods). These neurons are characterized as

trial-type-selective (6.2% of all Pir neurons). Finally, 4.5% of Pir

neurons exhibited selective responses during the test epoch

that reflect either a match or non-match between sample and

test odors (Figures 2A and 2G). The information represented by

these last two classes of neurons, trial type and match/non-

match, would appear to be sufficient to guide motor output in

downstream brain areas.

In OFC, 24.5% of the neurons were odor-selective during the

sample epoch (Figures 2B and 2D) and 60% of these exhibited

the same odor preference at test (Figure S2D), suggesting that

they encode odor identity. Compared to Pir, fewer of the

sample-selective neurons in OFC exhibited persistent spiking

through the delay epoch (Figure S2E; 13% in OFC versus 28%

in Pir). Only 3.7% of the neurons were selective to trial type (Fig-

ure S2F), but a greater fraction (11%) responded selectively to

match/non-match trials (Figure 2G). Therefore, the OFC also ap-

pears to have integrated sensory inputs in a way that could guide

appropriate motor output.

Unlike Pir and OFC, which largely represent odor identity, the

dominant task-related activity in ALM was correlated with the

lick response—the outcome of the match/non-match decision;

28% of ALM neurons distinguished match from non-match trials

during the test epoch (Figures 2C and 2G). Analyses of error trials

and premature licks show that the neural activity reflects lick

direction rather than the identities of the sample and test odors

or the true match/non-match condition, consistent with the role

of ALM in motor planning (Figures S2J and S2K) (Guo et al.,

2014a; Li et al., 2015; Svoboda and Li, 2018). A largely non-over-

lapping population in ALM (12%) exhibited weak odor selectivity

during the sample epoch, and among these, 12% (less than
318 Neuron 106, 316–328, April 22, 2020
1.5% overall) maintained this selectivity through the end of the

delay epoch (Figures 2D and S2H). Very few neurons exhibited

a selective response to the test odor, and only 1.4% of ALM

neurons were trial-type-selective (Figure S2I). Together, these

recordings are consistent with the known role for ALM in the

preparation of an appropriate motor response (Svoboda and

Li, 2018) following the match/non-match decision.

This survey of a sensory, association, and premotor cortex

reveals neurons in each area that exhibit one ormore of the prop-

erties required to solve the DMS task: (1) a representation of the

sample odor during the delay epoch, (2) a response to the test

odor that is possibly modulated by the identity of the sample

odor, and (3) the conversion of these sensory signals to

choice-related activity (Figure 2H). Figure 3A shows the

averaged difference in firing rate to each neuron’s preferred

versus nonpreferred odor during the trial. The assignment of

preferred odor was derived from five randomly selected trials

to each odor, which are excluded from the averages. The pro-

cedure ensured an unbiased estimate of the difference (see

STAR Methods). The average difference is strongest in Pir and

weakest in ALM. In the left panel, the magnitude of the difference

reflects a combination of greater selectivity and the fraction

of neurons that are selective, as nonselective neurons drive

the average toward zero. In the right panel, the averages

comprise only the selective cases from each area (filled histo-

grams in Figure 2). All three areas contain signals that could

convey the representation of the sample odor (Pir > OFC >

ALM). However, this conclusion is based on averaged activity

across trials.

To determine whether such task relevant information is avail-

able on single trials, we trained linear classifiers to decode these

variables from simultaneously recorded neurons (from 14 to

120 simultaneously recorded neurons; see STAR Methods).

As shown in Figure 3B, all three areas contain signals that sup-

port classification of the sample odor above chance levels

throughout the sample and delay epochs. The performance of

the classifier is lower for ALM recordings compared to Pir re-

cordings, for which the sample odor identity can be decoded

throughout the delay period and into the test epoch. This

extended sample-selective response could potentially be used

to perform a comparison between sample and test odors.

Consistent with this, classification of all four trial types is possible

using the Pir recordings (Figure 3C). In this same epoch (test

odor onset to the first lick response), it is possible to decode

the binary choice from all three areas, with ALM exhibiting the

highest performance (Figure 3D).

The neural recordings and decoding analyses would appear to

support a traditional hierarchical view of the mechanism respon-

sible for resolving the match/non-match decision. That is, the

expression of the decision by the left- and right-lick neurons in

ALM could arise by reading out activity in OFC or Pir, perhaps

via another intermediate area between Pir and ALM. On this

view, ALM is only essential once the test odor arrives, when it

must either convert the match/non-match decision to a lick

response or perform a computation, similar to our decoder,

that converts the population response from upstream areas to

a lick response. Both mechanisms lead to the prediction that

inactivation of ALM during the sample and delay epochs should
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Figure 2. Neural Recordings of Pir, OFC, and ALM

(A–C) Firing rates of example neurons from Pir (A), OFC (B), and ALM (C) recordings. The rasters (top) show the times of action potentials in individual trials (rows).

Traces are mean firing rates (100 ms bins) across trials. The dotted lines delineate the sample and test epochs.

(D–G) Selectivity indices of Pir, OFC, and ALM neurons for sample odor during the sample epoch (D), sample odor during the last 0.5 s of the delay epoch (E), test

odor during the test epoch (F), and choice during the test epoch (G). n = 647, 380, and 1,086 neurons for Pir, OFC, and ALM, respectively. Shading indicates

neurons that are selective for an odor (D)–(F) or behavioral choice (G) determined by Mann-Whitney U test, p < 0.01, not corrected for multiple comparisons.

(H) Summary of the feature-selective neurons in Pir, OFC, and ALM. Left to right: proportion of neurons selective for sample odor in the sample epoch, sample

odor in the late delay, test odor in the test epoch, choice in the test epoch, and trial type in the test epoch.

See also Figures S2 and S7.
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Figure 3. Odor Selectivity and Decoding Task-Relevant Features Using the Neural Responses
(A) Population sample odor selectivity of Pir, OFC, and ALM neurons. The ordinate is the difference in firing rate to the preferred and the nonpreferred odor

(STARMethods). The lines represent the means across neurons and the shading represents the SEM. Left graph, all recorded neurons from each area contribute

to the averages. Right graph, only neurons that are selective for sample odor in the sample and delay epochs contribute to the averages (n = 319, 105 and 147

neurons for Pir, OFC, and ALM, respectively).

(B) Performance of a support vector machine trained to classify the sample odor identity using simultaneously recorded neurons from each of the three areas.

Each thin line represents the probability of correct classifications of the held out trials using data from one session (see STARMethods). Thick lines represent the

mean of all sessions from an area (color).

(C) Performance of a classifier of trial type using all simultaneously recorded Pir neurons from each session. Same conventions as in (A).

(D) Performance of a classifier of match/non-match trials using the neural responses after test odor onset and before the animal’s first lick. Each point represents

the performance using N randomly selected neurons as input to the classifier, calculated using sessions in which at least N neurons were recorded simulta-

neously. The traces are fits to the classifier performance (logistic regression). For each area, the performance improves as more neurons are included.
not impair performance on the task. As we next show, this

seemingly obvious prediction is incorrect.

ALM Is Required for theMatch/Non-match Computation
We inactivated ALM bilaterally on a fraction of the trials by

photostimulation of GABAergic interneurons expressing chan-

nelrhodopsin-2 (ChR2) (Figures 4A and S3; STAR Methods)

(Guo et al., 2014a; Zhao et al., 2011). Inactivation was

confined to the sample and delay epochs and was tapered

gradually at the end of the delay (see STAR Methods) such

that by the onset of the test odor, ALM should have been

capable of receiving information from upstream sensory and

association areas. We reasoned that if ALM reads out the

match/non-match decision computed in upstream areas,

then inactivation of ALM before the arrival of the test odor

should not impair performance.

Contrary to this prediction, bilateral inactivation of ALM mark-

edly impaired performance on the DMS task (Figure 4B). The

proportion of correct trials decreased from0.86 on the control tri-

als to 0.68 (0.5 reflects chance performance). In contrast, bilat-

eral inactivation of OFC induced no impairment on the same

task (proportion correct: 0.82 and 0.84 with andwithout inactiva-
320 Neuron 106, 316–328, April 22, 2020
tion; Figure 4C). Photostimulation of ALM in animals that did not

express ChR2 did not diminish performance (Figure 4D). Inacti-

vation of ALM caused less impairment when it was restricted

to only a portion of the sample plus delay epochs (Figure 4E).

Inactivation during the late delay reduced the proportion of

correct trials from 0.86 to 0.79, whereas inactivation during the

sample and early delay reduced the proportion to 0.83. These

moremodest effects suggest that the impairment can be amelio-

rated when there is a time window in which ALM can receive task

related information.

The behavioral impairment induced by ALM inactivation is a

consequence of altered activity within ALM itself during the

sample and delay. Photoinactivation of ALM did not affect

odor or match/non-match selectivity in upstream areas, Pir

and OFC. During inactivation, the population odor selectivity in

Pir or OFC did not change appreciably (Figures 4I, 4J, 4L, and

4M), and our ability to decode match versus non-match from

activity was similarly unchanged (Figures 4O and 4P). Neural

recordings from ALM during silencing demonstrated that opto-

genetic suppression eliminated the representation of the sample

odor, but neural activity returned after the laser was ramped

down (Figures 4K, 4N, 4Q, and 4R). Despite their diminished
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Figure 4. Optogenetic Inactivation Experiments
(A) Schematic of the DMS and control tasks employed in the inhibition experiments (time not drawn to scale). A/B 3 A/B design is the same DMS task as in the

recording experiments. On inactivation trials, unless otherwise indicated, the laser was on for 2 s including a 0.25 s power ramp-down at the end (tapered

blue bar). In the interleaved A/B 3 A/B and C 3 C/D task, the delay epoch is 4 s (STAR Methods).

(legend continued on next page)
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performance, animals invariably licked to one of the two ports in

inactivation trials, and there was no consistent change in the re-

action time (Figures S4A and S4B). From these observations, we

conclude that the impairment was not explained by a loss of pro-

cessing capacity in Pir or OFC or from physiological sequelae of

photoinactivation of ALM that might affect its function during the

test epoch. This last conclusion deserves further scrutiny.

A possible concern is that the inactivation of ALMduring sample

and delay epochs disrupts the ALM circuitry such that it is unable

to process information about the test odor or receive information

about the decision from an upstreamarea.We evaluated this pos-

sibility with two control experiments that required the mice to lick

to the left or right based on the identity of a test odor but did not

require a comparison of the test odor to the sample odor. In the

first control, an uninformative sample odor A was presented on

all trials, but the mouse was rewarded for licking left or right for

test odor A or B, respectively (AA and AB trials; Figure 4A).

Inactivation during the sample and delay epochs produced

minimal impairment (0.91 to 0.88 correct; Figure 4F).

In the second control, we incorporated two additional trial

types into the AB 3 AB design using two new odors (C and D).

In these CC and CD trials, as in the previous control, the correct

lick behavior was determined only by the test odor. The six trial

types were randomly interleaved (Figure 4A). Inactivation of

ALM during the sample and delay epochs led to minimal impair-

ment in CC and CD trials (0.94 to 0.91 correct), whereas signifi-

cant impairment was replicated in the interleaved DMS trials

(0.82 to 0.68 correct; Figure 4G). The degree of impairment on

each type of experiment is captured by a simple statistic: the

log probability ratio of correct choices with and without inactiva-

tion (Equation 4). We used Monte Carlo methods to estimate the

magnitude and uncertainty of this statistic for each of the exper-

imental and control experiments. As is clear from Figure 4H,

inactivation impaired performance selectively when it was tar-

geted to ALM and when the sample odor was informative (Fig-

ure 4H, sample informative tasks versus sample uninformative

tasks, p < 0.0001; STAR Methods). Further, the laser introduced

no side bias in the CC/CD control (b2 = �0.46, SEM = 0.40,

p = 0.25, Equation 8; see STAR Methods), demonstrating that
(B) Proportion of correct trials in the A/B 3 A/B task with and without bilateral AL

the combined performance from 4,092 trials (14 animals). Statistical reliability of ef

*** denote P < 0.01, 0.001, and 0.0001).

(C) Proportion of correct trials in the A/B 3 A/B task with and without bilateral O

(D) Proportion of correct trials in the A/B 3 A/B task by ChR2 non-carriers with a

(E) Effect of inactivation during portions of the sample and delay epochs (5 anim

sample and first 1.5 s of the delay; D2, last 1.0 s of the delay; S+D, sample and

(F) Proportion of correct trials in the A 3 A/B control task with and without bilate

(G) Proportion of correct trials in the interleaved A/B 3 A/B and C 3 C/D task wi

(H) ALM inactivation caused greater impairment on the A/B3 A/B task than on th

inactivation is expressed as the difference in log probability of a correct choice

estimated by a bootstrap procedure. The largest effects were evident when ALMw

dataset). Table S1 provides additional identifying information about the experime

(I–K) Population sample odor selectivity of Pir (I), OFC (J), and ALM (K) with an

preferred and the nonpreferred odor across neurons (see STAR Methods). Note th

Pir, OFC, and ALM, respectively. The same neurons are used in the analyses be

(L–N) Population test odor selectivity of Pir (L), OFC (M), and ALM (N) with and w

(O–R) Performance of the SVM decoder to classify match/non-match using Pir re

using ALM responses (Q), and test odor identity using ALM responses (R) with a

See also Figures S3 and S4.
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the bias observed in some of the DMS trials is not due to unbal-

anced inactivation of the two hemispheres (see also Figure S4C).

These control experiments demonstrate that after recovery

from inactivation, ALM is capable of processing information

that instructs a licking response via a simple association

between two odors and two actions. The impairment on the

DMS task must therefore arise by interfering with the process

that allows the sample odor to establish, on each trial, the

appropriate association between test odor and lick response.

Moreover, it implies that this process occurs in ALM.

Enrichment of Sample-Selective Neurons in ALM
Layer 2
Based on the neural recordings, the necessity of ALM during the

sample and delay seems highly perplexing. At the end of the

delay period, less than 1.5% of neurons in ALM had activity

that was informative about the identity of the sample.We consid-

ered that we might have missed neurons, especially from super-

ficial cortical layers (Figure S2L; see also Figure 3D in Guo et al.,

2017). We therefore examined neural responses in ALM with

2-photon calcium imaging while mice performed the DMS task.

Imaging was performed in mice expressing the calcium indicator

GCaMP6f in pyramidal cells (Chen et al., 2013; Madisen et al.,

2015) (STARMethods). Consistent with our electrical recordings,

calcium imaging revealed that �37% of the neurons were

choice-selective across all cortical depths examined (Figures

S5A and S5B).

However, we also observed a large subset of neurons with

striking odor selectivity during the sample and delay epochs (Fig-

ures 5A, S5C, and S5D). Interestingly, the odor-selective calcium

activity was heterogeneous in its timing, showing a variety of

latencies and timescales (Figures 5B–5E). Some of the signals

spanned the sample and part of the delay period, peaking at

consistent times across trials (long duration, low scatter; e.g.,

Figure 5C). Other neurons exhibited more transient responses

that occurred at different times across trials (short duration,

high scatter; e.g., Figure 5D). Although they are ordered on

the graph for visualization, these brief, scattered activations

appeared random. For example, their timing is uncorrelated in
M inactivation. Each thin line represents data from one animal. The thick line is

fects in panels (B)–(G) is based on permutation tests (STARMethods) (*, **, and

FC inactivation (7 animals, 2,278 trials).

nd without sham ALM inactivation (2 animals, 437 trials).

als, 3,732 trials). Same conventions as in (B)–(D). Ctrl, no inactivation; S+D1,

delay.

ral ALM bilateral inactivation (9 animals, 2,198 trials).

th and without bilateral ALM inactivation (9 animals, 2,728 trials).

e control tasks and OFC inactivation on the same A/B3 A/B task. The effect of

with and without inactivation (STAR Methods; Equation 4). Distributions were

as inactivated and the sample was informative (t test, d.f. determined by size of

nts displayed in this panel.

d without ALM inactivation. The ordinate is the difference in firing rate to the

e different ordinate scales. Shading is SEM. n = 188, 104, and 470 neurons for

low.

ithout ALM inactivation.

sponse (O), match/non-match using OFC responses (P), sample odor identity

nd without ALM inactivation.
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Figure 5. Two-Photon Calcium Imaging of

ALM

(A) Sample odor selectivity of ALM neurons in an

example animal. The columns show all task-

related neurons at five cortical depths. Each row is

a neuron, sorted by the mean standardized

selectivity during the sample and delay epochs.

The standardized odor selectivity is the difference

between the DF/F to odor A and B, normalized by

the standard deviation (STAR Methods).

(B–D) DF/F traces of example sample-selective

neurons. Each row is a trial, grouped by sample

odor identity and sorted by peak response time to

sample odor. The three examples illustrate varia-

tion in response duration (B, D, brief; C, long) and

consistency in timing (B, C, consistent across tri-

als; D, scattered across trials).

(E) Time course of sample-selective responses.

Each point shows the duration of the calcium tran-

sient (abscissa) against the scatter of the peak

response (ordinate). Response duration is the me-

dian duration of each neuron’s response. Scatter is

defined as the interquartile range of the peak

response times across trials (STAR Methods). The

three colored points correspond to the neurons

shown in panels (B)–(D).

(F–H) Selectivity indices of neurons across five

cortical depths for sample odor, test odor, and

choice, respectively. n = 614, 514, 608, 512, and

379 neurons for the five cortical depths, respec-

tively, from superficial to deep layers. Shading

denotes statistical significance (p < 0.01, Mann-

Whitney U test, two-tailed). (F) Selecivity for sample

odor during the sample and delay epochs; (G)

Selectivity for test odor; (H) Selectivity for choice.

See also Figures S5 and S6.
simultaneously recorded neurons (Figures S6A and S6B). These

characterizations also hold for the estimated spike rates,

achieved through deconvolution of the raw Ca signals (Figures

S6C–S6F), despite a revision of the estimates of signal duration.

From the imaging data, we educe that a subpopulation of ALM

neurons represents the identity of the sample odor through the

sample and delay period.

These sample selective neurons appear to constitute a distinct

cell type. They were concentrated in the superficial layer 2 (L2;

100–200 mm from the pial surface), where 18% responded selec-

tively to one or the other sample odor (Figures 5A and 5F). They

were only rarely encountered between 200 mm and 600 mm below

the pial surface (p < 0.05, Kruskal-Wallis test with Tukey-Kramer

multiple comparison). This layer specificity is not explained by an

inability tomeasure calcium signals in deeper layers, as compara-

ble fractions of choice-selective cells were found at all depths

examined (p = 0.49, Kruskal-Wallis test; Figures 5H and S5A).

Indeed, a decoder, trained to classify the sample odor, performs

much better using L2 neurons than using neurons from the other
layers we sampled (Figure 6A). In contrast,

the capacity to decode choice is similar

across all layers (Figure 6B). Most of these

sample-selective neurons did not respond

to the testodor (87of108,81%;Figure6C),
and only a few were choice-selective or active during licking

(Figure 6D). Their time course distinguishes them from the rare

odor-selective responsesencountered inour electrical recordings,

and theabsenceof lickandchoiceactivitydistinguishes themfrom

the dominant cell type in ALM.

The L2 neurons might resolve the perplexing inactivation

result. ALM contains a representation of the sample odor

throughout the delay period. It is therefore possible that the

match/non-match decision is made within ALM, based on two

external inputs that convey (1) the identity of the sample odor

during the sample or delay period and (2) the identity of the

test odor after the delay. Indeed, the activity of the L2 neurons

during the sample and delay is informative about whether the

mouse will ultimately succeed in the trial by making the correct

choice. This assertion is supported by the logistic regression

analysis summarized in Figure 6E. The concentration of errors

in the upper left corner of the graph demonstrates that errors

were more likely to occur when neurons selective for sample

odor A, say, responded relatively weakly to sample odor A or
Neuron 106, 316–328, April 22, 2020 323
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Figure 6. Sample-Selective Cells in ALM L2

(A and B) Performance of a support vector machine trained to classify the

sample odor identity (A) or choice (B) using a subset of simultaneously imaged

neurons from each of the five cortical depths. Each thin line represents the

probability of correct classifications of the held out trials using data from one

session (see STAR Methods). Thick lines represent the mean of all sessions

from a depth.

(C) Selectivity indices of ALM L2 neurons for sample and test odors. Red, blue,

or purple denotes neurons selective for the sample odor, test odor, or both,

respectively. Non-selective neurons are shown in gray.

(D) Selectivity indices of ALM L2 neurons for sample odor and choice. Red,

blue, or purple denotes neurons selective for the sample odor, choice, or both,

respectively. Non-selective neurons are shown in gray.

(E) Trial-by-trial association between neural response and choice accuracy.

The heatmap shows the fraction of errors when L2 neurons responded weakly

to the preferred odor (pref) or strongly to the nonpreferred odor (non). The

criteria for weak and strong are varied parametrically up to the median for pref

(abscissa) and above the median for non (ordinate). The graph shows an

increased probability of an error when the pref response is in the lower 20th

percentile or the non response is in the upper 30th percentile. Logistic

regression demonstrates that the effect is reliable across the dataset

(p < 0.001; STAR Methods).
respond more strongly than usual to sample odor B. Such single

trial correlations between neural response and choice, termed

choice probability, have been exploited in perceptual decisions

to support the proposal that a neuron’s response contributes

to the decision process, either directly or via correlation with

other neurons with similar response selectivity (Britten et al.,
324 Neuron 106, 316–328, April 22, 2020
1996). In the present case, the contribution is not to the match/

non-match or lick-left lick-right decision. Rather, it is a decision

about which mapping—from test odors to lick responses—to

apply on each trial (Figure 1D).

Potential Mechanisms
We do not yet know themechanism by which a representation of

the sample odor in ALM affects the match/non-match decision,

but it appears that some process requiring ALM in the sample

and delay period must establish a state at the time of test that

can implement the correct mapping between externally derived

signals about the identity of the test odor and activation of the

appropriate lick neurons. Several possible mechanisms could

underlie the formation of such a state. One possibility is that

the state is defined by the persistent firing of sample-selective

neurons, as in standard attractor models of working memory

(Figure 7A) (Amit and Brunel, 1997; Goldman-Rakic, 1995). In

this model, the requirement of ALM during the sample and delay

epochs (Figure 4) demands that ALM itself maintain a persistent

representation of the sample odor.

We determined whether ALM and/or earlier stages form

persistent representations by controlling whether or not recur-

rent connections at each stage are modified during network

training (Figure 7, curved arrows; see STAR Methods). If the

persistent sample representation is maintained in upstream

areas, but not ALM, the network model predicts that inactivating

ALM would cause little behavioral impairment (Figure 7B, top

trace). This is inconsistent with our experimental observation. If

the persistent sample representation is only maintained in

ALM, the network model predicts that inactivation during the

sample and early delay epochs should produce gross impair-

ment (Figure 7B, bottom trace). This too is inconsistent with

the data (Figure 4E). The weaker effects of inactivation when it

was restricted to portions of the sample and delay epochs

suggest that ALM’s representation of the sample odor can be

partially recovered by activity in upstream areas. Thus, our

experimental results argue for models in which multiple brain

regions, including both ALM and additional upstream areas,

each maintain a persistent representation of the sample odor

(Figure 7B, middle trace).

The attractor models posit that a representation of the sample

odor is maintained through the persistent firing of neuronal

assemblies. However, this memory might be maintained in other

ways. We observed that impairment was more profound when

ALM was silenced during the entire sample and delay epochs,

compared with inhibition only late in the delay (Figure 4E). This

suggests that a trace of the sample odor identity can persist in

ALM during silencing. This trace may be maintained by facilita-

tion or depression of synapses formed by axons of odor-selec-

tive neurons onto lick-left or lick-right neurons (Mongillo et al.,

2008) (Figure 7C). It could also be achieved through dendritic

gating mechanisms that selectively route test odor information

depending on the sample odor identity (Yang et al., 2016) (Fig-

ure 7D). In this model, neurons selective for a particular sample

odor enhance or suppress dendritic branches of lick-selective

neurons where either A or B inputs concentrate. This synaptic

modulation could be controlled by sample-selective neurons

in ALM layer 2. Indeed, the observation of sample-selective
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Figure 7. Neural Models of the DMS Task

(A) Three variants of the recurrent neural network

model. Each variant comprises three stages,

corresponding roughly to primary olfactory sensory

areas, intermediate association areas, and ALM.

The stages are connected by fixed, random, feed-

forward projections (horizontal straight arrows).

Top: all recurrent connections within each stage are

trained. Middle: recurrent connections within Pir

and OFC, but not ALM, are trained. Bottom: only

recurrent connections within ALM are trained. Note

that only those recurrent connections that are

trained are able to support persistent activity that is

not inherited from an upstream area.

(B) Simulated effects of inactivating ALM during

portions of the sample and delay epochs. Same

conventions for the behavioral epochs as in

Figure 4E.

(C) Synaptic facilitation and depression model.

Facilitation leads to enhanced response to repeated

presentationof thesamestimulus inmatch-selective

neurons, whereas depression results in suppression

in non-match-selective neurons. We assume that

the soma is inhibited during the sample epoch so

that action potentials only occur after the test odor.

(D) Dendritic gating model. Top: circuit supporting

match (M). The sample odor suppresses excitatory

inputs that convey the identity of the opposite test

odor. Bottom: circuit supporting non-match (NM).

A similar result could be achieved with presynaptic

gating. This circuit also requires a mechanism to

suppress spiking before the test epoch and a

mechanism to reset the gate.
responses that occur throughout the sample and delay (Fig-

ure 5E) could explain why impairment is reduced when inactiva-

tion is limited to only a part of the sample and delay periods. If

instead of participating in a dynamical computation to sustain

the representation of the sample odor, these neurons alter the

state of the neurons that will ultimately process the test odor,

then full impairment could be ameliorated by an interruption to

the inactivation at any time (cf. Kopec et al., 2015).

DISCUSSION

Decisions that engage cognitive capacities entail at least three

elemental processes: (1) the maintenance of information over

timescales that can extend for seconds prior to a response; (2)

the association of the same information with different responses;

and (3) the association of the same response with different

information. The first process requires planning and working

memory (Fuster, 1973; Goldman-Rakic, 1995; Romo et al.,

1999), whereas the latter two involve flexible, context-dependent

routing of information to appropriate outputs.

Our findings suggest an unexpected role of ALM in processing

perceptual information. Neurons in ALM are known to play an

essential role in the planning of licking (Svoboda and Li, 2018).

In primates, and more recently in rodents, preparatory activity

in premotor and parietal circuits has been shown to play a role

in perceptual decisions, in which attributes of sensory stimuli

instruct the selection of a movement (Hanks et al., 2015; Kopec

et al., 2015; Shadlen and Newsome, 2001). In some cases, this
preparatory activity evolves gradually as evidence accrues,

thereby reflecting the deliberation process leading to a decision

(Cisek, 2011; Gold and Shadlen, 2003; Schall and Hanes, 1993;

Selen et al., 2012; Spivey et al., 2005; Yang and Shadlen,

2007). These observations might lead one to anticipate a

role for premotor area ALM in an olfactory decision that is re-

ported by licking to the left or right. But there is an essential

difference.

In the DMS task, a plan to lick left or right cannot be prepared

until the test odor arrives. Before this moment, all that can be

prepared is the sensory-response mapping between the

possible test odors and the appropriate lick direction. Therefore,

the impairment in performance arising from the inactivation of

ALM does not reflect a disruption of movement preparation,

but rather a disruption of the state of the circuit that readies it

to process information about the test odor to select the appro-

priate lick response. This is a high-level decision about how to

make a subordinate decision, that is, the type of control process

associated with higher prefrontal circuits in primates (Wallis and

Miller, 2003; cf. Ebbesen et al., 2018). In our DMS task, this

control process appears to require a normally functioning ALM

during at least some stretch of the sample plus delay periods.

The requirement was only demonstrable when the sample odor

established the sensory-response mapping between test odor

and lick direction. Inactivation of ALM during the sample and

delay did not impair performance on the A 3 A/B and C 3 C/D

control tasks. These controls require only simple, learned

associations between the test odor and a lick response.
Neuron 106, 316–328, April 22, 2020 325



The absence of impairment on these control tasks also

demonstrates that ALM can receive information from upstream

neurons about the identity of the test odor or its associated lick

direction. In contrast, upstream areas do not supply ALM with

information about match versus non-match. This assertion holds

for any upstream area—not just Pir and OFC, but the many areas

that connect the main olfactory bulb to ALM. We did not record

from the entire network of areas; hence, we cannot be certain

that they do not contain critical information that helps the

mouse solve the DMS task. However, they do not supply the

match/non-match (or lick-left lick-right) solution to ALM or its

downstream targets. We cannot rule out the possibility that

inactivation of ALM during the sample and delay periods induce

a disruption in whatever essential computation such upstream

areas might contribute. However, this seems unlikely because

task-relevant information in OFC and Pir was unaffected by

ALM inactivation (Figures 4I, 4J, 4L, 4M, 4O, and 4P).

It is nonetheless remarkable that match versus non-match can

be decoded from small populations of neurons in Pir and OFC. It

serves as a reminder that information that can be decoded by the

experimenter is not necessarily decodedby the brain.We assume

that Pir and OFC supply information, directly or indirectly, to ALM

during the test epoch as well as the sample and delay epochs.

The absence of impairment associated with bilateral OFC inacti-

vation does not imply otherwise, as it could be explained by the

multiplicity of pathways that connect Pir to ALM. Also, although

the OFC is thought to play an essential role in reversal learning

(Schoenbaumet al., 2002), ourmice had already learned the sam-

ple-instructed mappings—effectively trial-by-trial reversals—by

the time of the inactivation experiments.

Previous studies have demonstrated persistent activity in ALM

in association with perceptual decision making. For example,

elevated activity was reported in direction-selective lick neurons

when mice associated different haptic stimuli (applied to a

whisker) with a lick to the left or right (Chen et al., 2017; Guo

et al., 2014a; Li et al., 2015; Svoboda and Li, 2018). This persis-

tent activity is involved in planning and driving movement based

on a sensory-response association. In our study, on the other

hand, persistent activity in sample-selective neurons represents

a sensory category rather than a plan of action, because the

action cannot be selected until after the delay period upon

receipt of the test odor. Hence, unlike in a sensory-instructed de-

layed response task (Guo et al., 2014a; Li et al., 2015) in which

persistent activity represents decision outcome, the activity of

our L2 neurons is not the outcome of the match/non-match de-

cision because this decision has yet to be made. This activity

could be viewed as representing an intermediate decision about

which mapping from test odor to lick response to deploy (Fig-

ure 1D). It is possible that our sample-selective neurons overlap

those reported previously, but we suspect the overlap isminimal.

The persistent activity we observed was concentrated primarily

in superficial L2 neurons that did not exhibit lick responses,

whereas the persistent activity reported in the somatosensory in-

structed delay task was found in all cortical layers and in many

neurons that responded to error responses in a way that agrees

with their role in motor planning.

We reason that the sample-selective neurons play a critical

role in the DMS task. First, to perform the task, it is essential
326 Neuron 106, 316–328, April 22, 2020
that neural activity in ALM is normal during the delay period.

Second, the only task-relevant activity in ALM that spans the

delay period is a representation of the sample odor by these

neurons concentrated in L2. Third, the activity of these

sample-selective neurons is predictive of performance on a

trial-by-trial basis (Figure 6E). We conclude that these neurons

are likely to affect the local circuitry so that the two test odors

are associated with the appropriate lick response. More defini-

tive evidence for this interpretation would require selective

inactivation of this population of neurons. This is not possible

presently, but if these neurons represent a distinct subtype, as

we suspect (e.g., Luo et al., 2017), it may be possible in the

near future. We also do not know if the sample-selective neurons

affect the lick cells directly or influence the local circuit.

We considered several alternative explanations of the impair-

ment produced by ALM inactivation. The control experiments

rule out a simple motor impairment or motor bias, allowing us

to focus on the delay period activity. Our interpretation is that

the representation of the sample odor in ALM establishes a state

of the ALM circuit such that it can perform a simple sensory-

response association at the time of test. An alternative is that

ALM must prepare both potential motor plans during the delay

period (Cisek and Kalaska, 2005) in order for one to be selected

by an instruction from another brain area, and it is solely the

disruption of this preparatory activity that explains the impair-

ment. This account predicts incorrectly that inactivation would

also impair performance on the A 3 A/B and C 3 C/D tasks. It

is also inconsistent with the neural recordings, which failed to

reveal simultaneous preparation of the two lick directions during

the delay period.

Another alternative explanation is that inactivation before the

test period disrupts a general state of readiness in ALM to

respond to any signal instructing an action to be performed.

We find this unlikely, because to account for our behavioral

observations, this state would need to be specific to the DMS

task and not control tasks with identical temporal structures

and actions. Finally, we note that DMS is a more difficult task

than the controls. Therefore, it may be argued that DMS is

more susceptible to perturbations. However, it is not the motor

action that makes DMSmore difficult than the controls, because

all the tasks require the identical motor responses. If the only role

of ALM is motor preparation, then inactivating ALM should not

result in differential impairment of the DMS and control tasks

(Figure 4H). More importantly, our perturbation affected ALM

before a decision could be prepared, because the decision

cannot be made before the test odor arrives. Previous studies

of decisions to lick to the left or right examined only the prepara-

tory phase after the decision was instructed (Guo et al., 2014a;

Li et al., 2015).

Neurons in superficial layers of the neocortex receive input

from controlling structures such as intralaminar and accessory

thalamic nuclei (Jones, 1998) as well as long range feedback,

e.g., perirhinal cortex to ALM (Zingg et al., 2014). These layers

contain the distal dendrites of projection neurons in deeper

layers, and activation or suppression of these dendrites can alter

the functional properties of the projection neurons (Bittner et al.,

2017; Larkum et al., 1999, 2009; Polsky et al., 2004). Thus, it is

possible that the selectivity to the sample odor that we observed



in L2 neurons might reflect a general mechanism that alters the

state of ALM circuitry to flexibly implement different sensori-

motor mappings.

It may seem counterintuitive that a premotor area would play a

critical role in a decision about the relationship between two

sensory stimuli. However, the ultimate goal of both sensory

and motor systems is not to identify stimulus features or cate-

gories, but to determine whether to act one way or another. A

potential action might require support from different sources of

sensory input. Thus, decisions to act—even if only provision-

ally—rest on a capacity of the motor system to establish func-

tional connections that allow it to integrate different sources

of sensory information, and this information infiltrates the re-

sponses of neurons in cortical areas that are appropriately desig-

nated premotor or associative (Cisek, 2011; Shadlen and Kiani,

2013). These functional connections must be rapidly modifiable

as the demands of an organism and its context change. This ca-

pacity for dynamic circuit configuration is likely to support a wide

range of cognitive phenomena involving flexible routing, decision

making, and perceptual inference (Shadlen and Shohamy, 2016).
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Mouse: Ai93(TITL-GCaMP6f)-D;CaMK2a-tTA Jackson Laboratory 024108
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Electrophysiology

32 channel, acute Buzsaki32 probe Neuronexus Buzsaki32-A32

32 channel, chronic Buzsaki32 probe Neuronexus Buzsaki32-H32_21mm

32 channel, acute Poly3 probe Neuronexus A1x32-Poly3-5mm-25 s-177-A32

64 channel, acute 1x64 H3 probe Tim Harris https://www.cambridgeneurotech.com/

neural-probes
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LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Michael Shadlen (shadlen@columbia.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals weremaintained on 12 h: 12 h light/dark cycle with food andwater available ad libitum. Mice werewater-restricted during the

training and testing phases. Experimental sessions were 1-2 h, during which mice received 0.5-1.5 mL of water. Animals received

supplemental water as necessary to maintain their body weights. Aseptic surgeries were carried out under ketamine (100 mg/kg)/

xylazine (10 mg/kg) or 1%–3% isoflurane anesthesia. Buprenorphine (0.05-0.1 mg/kg) and carprofen (5 mg/kg) were administered

for postoperative analgesia. Animal care and experiments were carried out in accordance with the NIH guidelines and approved

by the Columbia University Institutional Animal Care and Use Committee (IACUC).

This study is based on data from 41 mice (both males and females, 2-8 months old). Five C57BL/6J and 6 VGAT-ChR2-EYFP

(Jackson Laboratory, JAX 014548) mice were used for electrophysiology recording. Two untrained VGAT-ChR2-EYFP mice were

used to characterize the inhibition at different laser powers. Twenty-nine VGAT-ChR2-EYFP mice were used for inhibition

experiments, 6 of which were also used for simultaneous recording during inhibition. Two-photon imaging data were collected

from 5 Emx1-cre+/�;TITL-GCaMP6f+/�;CaMK2a-tTA+ mice. These mice were created by crossing Ai93(TITL-GCaMP6f)-

D;CaMK2a-tTA (JAX 024108) to Emx1-IRES-cre+/+ (JAX 005628) line.

METHOD DETAILS

Behavior training
Before training, mice were implanted with a custom-made titanium head post (Guo et al., 2014b). The scalp and periosteum over the

dorsal surface of the skull were removed, and a head post was placed on the skull, aligned with the lambda suture and cemented in

place with C&B metabond (Parkwell, S380). After at least 2-3 days of recovery, animals were water-restricted and accustomed to
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head-fixation following procedures described in Guo et al., 2014 (Guo et al., 2014b) and then trained on a custom-assembled

apparatus.

Odorants were delivered with a custom-made olfactometer and custom-written LabVIEW programs (National Instruments).

(+)-a-pinene (odor A, Sigma-Aldrich, 268070), cis-3-hexen-1-ol (odor B, Sigma-Aldrich, W256307), (R)-(+)-limonene (odor C,

Sigma-Aldrich, 183164), and methyl butyrate (odor D, Sigma-Aldrich, 246093) were chosen for their lack of innate valence to mice

(Root et al., 2014) and their low adhesion to the surface of the olfactometer. The odorants were diluted 100-fold in mineral oil

(Fisher Scientific, O121-1) and then loaded on syringe filters (GE healthcare, 6888-2527 or 6823-1327). The air flow was maintained

at 1.0 L/min. We confirmed the rapid kinetics (Figure S1G) of these odorants with photo-ionization detector (Aurora Scientific, 200B).

Over the course of a behavioral session, the odorants on the syringe filters gradually deplete. Thus animals were unlikely to rely on the

absolute concentration of the odorants which changed constantly, but rather the identity of the odors, as evidenced by the stable

sensory responses in Pir over a session (Figure 2A).

During training, mice were presented with a sample odor (1.0 s duration) and a test odor (1.0 s) separated by a delay epoch (1.0 s).

After hearing an auditory ‘‘go’’ cue (0.1 s, 5 KHz pure tone), they were free to report their decision by licking to one of the two syringe

ports positioned in front of their mouth, and collect a water reward at the same port if they were correct. Many animals started licking

in the test epoch, which was permitted, but only the licks during the 2 s ‘‘response window’’ following the ‘‘go’’ cue were considered

their choice. To prevent mice from ‘‘probing’’ for the correct port by rapidly switching between the two ports, we required mice to

commit to their choices. A choice is scored as correct only when the first two licks were on the correct port. If they first licked on

the incorrect port, that trial was scored as an error. If they licked once on the correct port and then on the incorrect port, that trial

was also scored as an ‘‘error.’’ If they did not lick during the ‘‘response window’’ or only licked once on the correct port, that trial

was scored as ‘‘no choice.’’

The two odorants give rise to four unique pairs of sample and test odors (AA, AB, BB, and BA), or trial types, and were randomly

presented in each session. The match trials (AA, BB) were rewarded on the left port and non-match trials (AB, BA) on the right. Mice

were punished by a brief timeout (3-8 s) when they made an error. ‘‘No choice’’ trials were rare and typically occurred in the very early

training stage or at the end of a session when the mice were sated. Animals completed this training stage when they achieved a

criterion of at least 80% correct for each trial type in a single session. They then underwent additional training to suppress

‘‘premature’’ licking before the test epoch. Such early licks were punished by an immediate 0.1-0.2 s siren (RadioShack, 273-

079), followed by a 0.5-1.0 s pause in that trial, and a longer inter-trial interval. We required the proportion of trials with premature

licking to be less than �20%. After achieving these milestones (median 25 days; IQR 21-31 days) the sample and test durations

were reduced from 1.0 s to 0.5 s, and the delay was increased from 1.0 s to 1.5-4.0 s depending on the experiment (1.5 s in

extracellular recording, 2.0 s in imaging experiments, 1.5, 2.5 or 4.0 s in optogenetic inactivation). Mice performed at 90% correct

(interquartile range 88%–92%) when they entered the testing phase.

Electrophysiology
Extracellular recordings were made acutely or chronically in head-fixed animals using 32- or 64-channel silicon probes (Buzsaki32

and Poly3, NeuroNexus; 13 64 acute H3 probe, HHMI). The probes were targeted stereotaxically to Pir, OFC and ALM using Bregma

coordinates as follows: Pir: AP 1.9-2.4 mm, ML 1.5-2.1 mm, DV 2.3-2.9 mm; OFC: AP 2.2-2.8 mm, ML 0.7-1.2 mm, DV 1.2-1.8 mm;

ALM: AP 2.5 mm, ML 1.5 mm, DV 0-1.1 mm. Four animals were used for Pir recordings, six for OFC recordings, and five for ALM

recordings.

In acute recordings, a small craniotomy (0.3-0.8 mm in diameter) was made over the targeted area before the recording session.

Recording depth from the pial surface was inferred from micromanipulator reading. After each recording session, the brain surface

was covered with silicone gel (3-4680, Dow Corning) and Kwik-Sil (World Precision Instruments). The recording sites were confirmed

by painting the recording probes with Vybrant DiO Cell-Labeling Solution (Invitrogen). Representative histology sections are shown in

Figure S7A-C. In chronic recordings, the probe (Buzsaki32-H32_21mm, NeuroNexus) was attached to a custom-made microdrive

which allows for advancement of the shanks. The microdrive was then implanted and cemented with C&B metabond and dental

acrylic (Lang Dental Jet Repair Acrylic, 1223CLR). We advanced the shanks by 50 mm per day at the end of each recording session.

Two-photon calcium imaging
Calcium imaging was performed on Emx1-cre+/�;TITL-GCaMP6f+/�;CaMK2a-tTA+ mice. A square craniotomy (2mm side) was

made above left or right ALM, along the superior sagittal sinus and the inferior cerebral vein. The imaging window was constructed

from three stacked layers of custom-cut coverglass (CS-3S, Warner Instruments) and cemented with C&B metabond. Animals were

allowed 1-2 weeks of recovery before the imaging sessions began. Images were acquired with a Bruker Ultima two-photon

microscope under resonant galvo scanningmode. The light source was a femtosecond pulsed laser (Chameleon Vision II, Coherent).

The objective was a 16X water immersion lens (Nikon, 0.8 NA, 3mm working distance). GCaMP6f was excited at 920nm and images

(512 3 512 pixels, �820 mm x 820 mm field of view) were acquired at �30 Hz.

Photostimulation
Animals were preparedwith a clear skullcap to achieve optical access to ALM (Guo et al., 2014a). Briefly, after removing the scalp and

periosteum over the dorsal surface of the skull, a layer of cyanoacrylate adhesive (Krazy glue, Elmer’s Products Inc.) was directly
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applied to the intact skull. The entire skull was then covered with a thin layer of the clear dental acrylic (Lang Dental) with a head post

cemented over the lambda suture. Before photostimulation sessions, the dental acrylic was polished (0321B, Shofu Dental

Corporation) and covered with a thin layer of clear nail polish to reduce glare (Part No. 72180, Electron Microscopy Sciences). Light

from a 473nm laser (MLL-FN-473-50mW, Ultralasers, Inc.) was directed to an optic fiber and split into two paths (FCMH2-FCL,

Thorlabs, Ø200 mm Core, 0.39 NA). The two optic fibers were positioned over ALM on each hemisphere. The light transmission

through the skullcap is �50% in average power, as measured directly with a light meter (PM100D, Thorlabs) with freshly dissected

skullcap, consistent with previous measurements (Guo et al., 2014a).

We used 40 Hz photostimulation with a sinusoidal temporal profile (3 mWaverage power as light reaches the skull,�1.5mWon the

brain surface). The photoinhibition inactivated a cortical area of �1mm radius, as the population firing rate drops to �50% at 1mm

away from the center of the laser beam (Figure S3A). To reduce rebound excitation after laser offset, we included a 250 ms linear

power ramp-down at the end of the photostimulation (Figure 4A) unless otherwise indicated. In the interleaved A/B 3 A/B & C 3

C/D experiment, the delay epoch was extended to 4 s while sample and test epochs were kept at 0.5 s each. Here we used a

500ms ramp-down at the end of the 4 s photostimulation, which terminates 500ms before the test odor onset to allowmore recovery

time. To prevent the mice from distinguishing photostimulation trials from control trials, a masking flash (40 Hz sinusoidal profile) was

delivered with 470 nm LED (Luxeon Star) and LED driver (SLA-1200-2, Mightex Systems) in front of the animals’ eyes on all trials. The

masking flash was not phased locked to the photostimulation, began at sample onset and lasted until the end of test, covering the

entire stimulus and delay epochs in which photostimulation could occur.

For the experiments in which we varied the duration of inactivation (Figure 4E), photostimulation was either limited to (i) the 0.5 s

sample epoch and the first 1.5 s of the 2.5 s delay epoch, or (ii) the last 1.0 s of the delay epoch, or (iii) the entire sample plus delay

epoch. These inactivation trials were randomly interleaved to constitute 25% of all trials. For each animal, multiple (2-3) behavioral

sessions were pooled to collect at least 10 trials for each of the four trial types and the three inactivation durations.

Simultaneous photostimulation and recording
We calibrated the laser power for ALM and OFC inactivation by recording from these two areas during photoinhibition in awake

animals. For ALM inactivation, we positioned an acute 1x64 H3 probe at various distances from the optic fiber over ALM

(0-2.0 mm in 0.5 mm increments). A range of laser powers (0.5 mW, 1.5 mW, 5.0 mW, and 10.0 mW) as well as controls were exam-

ined at each location. We chose 1.5 mW power on the brain surface as it inactivates a cortical area of �1mm radius and produces

minimal rebound activity after laser offset (Figure S3). For OFC inactivation, an optic fiber was targeted to Bregma AP 2.5 mm, ML

1.0 mm, DV 1.4 mm. The recording probe was then positioned at AP 2.5 mm, ML 1.5 mm, DV 1.0-2.3 mm, where it is close to the

border of OFC with agranular insular cortex. We recorded the neural responses similarly at a range of laser powers and chose

1.0 mW to silence OFC while minimizing the impact on neighboring brain areas.

For simultaneous recording and inactivation when animals performed the DMS task, we used the clear skullcap preparation for

photoinhibition and made a small craniotomy lateral to the optic fiber to insert the probe. The probe was advanced at 60-70� angle
from the horizontal plane at Bregma AP 2.3-2.5 mm, ML 2.0-2.5 mm to record from ALM, OFC, and Pir at different depth.

QUANTIFICATION AND STATISTICAL ANALYSIS

Electrophysiology data analysis
The 32- and 64-channel recording data were digitized at 40 KHz and acquired with OmniPlex D system (Plexon Inc.) The voltage

signals were high-pass filtered (200 Hz, Bessel) and sorted automatically with Kilosort (Pachitariu et al., 2016). The clusters were

then manually curated with Phy GUI (Rossant et al., 2016) to merge spikes from the same units and to remove noises and units

that were not well isolated. Recording depths were inferred from micromanipulator readings in acute recordings or microdrive turns

in chronic recordings.

We determined sample odor selectivity for each neuron by comparing the spike counts during the sample epoch (0.1-0.6 s from

sample onset) or late delay (1.5-2.0 s from sample onset) between sample odor A group (AA, AB) and sample odor B group (BA, BB).

The 0.1 s time offset from the sample epoch accounts for the olfactometer valve time. A neuron was considered odor selective if its

responses to sample odor A and B were significantly different by a two-tailed Mann-Whitney U test (p < 0.01, not corrected for

multiple comparisons). The selectivity index (SI) was computed as follows for each unit: First, the trial-by-trial spike counts from

the responses to odor A and B were used to construct a Receiver Operating Characteristic (ROC). The area under the ROC (AuROC)

is the probability that a randomly sampled response associated with odor A is larger than a randomly sampled response associated

with odor B. The selectivity index is

SI = 2

�
AuROC� 1

2

�
(1)

such that ± 1 represents perfect discriminability (i.e., no overlap of the response counts) and 0 indicates chance-level discrimina-

bility (i.e., complete overlap). Positive SI connotes a preference for sample odor A. We determined selectivity for the test odor and

choice in a similar fashion by comparing spike counts during the test epoch (2.1-2.6 s from sample onset), with appropriate trial

grouping. Positive SI for choice connotes a preference for licking to the left spout.
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The trial-type selectivity in Figure S2C, F, I was computed as follows. Neurons from each of the three areas were first selected by

their test odor selectivity. Only neurons deemed test-odor selective as determined by aMann-Whitney U test (p < 0.01, not corrected

for multiple comparisons) were considered further. These test-odor selective neurons were then treated separately based on their

preference for test-odor A or B. If a neuron preferred test odor A, its selectivity index for trial type was computed based on its

responses to AA versus BA trials, in a similar fashion described above. Positive SI connotes a preference for AA. If a neuron preferred

test odor B, its trial type selectivity was computed based on its response to AB versus BB, and positive SI connotes a preference

for AB.

Graphs depicting population odor selectivity of a brain area show the difference in firing rates associated with the preferred and

nonpreferred odors (Figure 3A, 4I-N). The preferred odor of each neuron was designated using a subset of the trials (n = 5 per odor,

chosen randomly), in the epoch under consideration (e.g., sample), based on the sign of the difference in the means, irrespective of

statistical significance. These trials were then excluded and the odor selectivity was computed as the spike rate to preferred odor

minus the nonpreferred odor on the remaining data in a sliding bin of 100 ms. All neurons from each of the three areas are included

in Figure 3A (left graph). In Figure 4I-N, all neurons from each of the three areas are included.

For the decoding analysis (Figure 3B-D, 4O-R and 6A, B), we trained a support vector machine (SVM) (Fan et al., 2008) with neural

responses recorded simultaneously from Pir, OFC, or ALM to classify sample odor identity, trial type, or match/nonmatch. 48-120

neurons were simultaneously recorded from Pir, 16-82 neurons from OFC and 14-82 neurons from ALM. In Figure 3B, we used

the spike counts in a sliding bin of 500ms from 40 randomly selected neurons from each of the three areas at 100ms steps. Sessions

with insufficient number of simultaneously recorded neurons were excluded. In Figure 3C, we used a 500 ms sliding bin with neural

responses from all Pir neurons recorded in a session. In Figure 3D, we used the firing rates in the 500ms timewindow before animal’s

first lick. The decoding capability of each area was estimated by using varying numbers of randomly selected neurons that are

recorded simultaneously in a session. As we included more neurons, sessions with insufficient number of neurons dropped out of

the analysis. The classifier was trained on randomly selected 90% of the trials in each session and then tested on the remaining

10% of the trials. Only correct trials were used. The training/testing was repeated 50 times for every given number of neurons and

for all the sessions that may be included. The correct rates from the 50 repetitions were then averaged. When comparing

performance in control and inactivation conditions (Figure 4O-R), the classifiers were trained on correct control trials and tested

on correct laser trials and held-out correct control trials.

Imaging data analysis
The raw imageswere first motion correctedwith SIMA package (Kaifosh et al., 2014) (Release 1.3.2) and verifiedmanually. Regions of

interest (ROIs) were selected automatically with constrained nonnegative matrix factorization (CNMF) (Pnevmatikakis et al., 2016).

The CNMF algorithm infers the time-varying background and extracts smoothed DF/F signals, which were used for plotting only.

For data analysis, we manually computed unfiltered DF/F traces as follows. We obtained the raw fluorescent trace of each ROI by

applying the spatial component (ROI filter) on the image sequence. We then smoothed the raw trace in each trial with a 1 s averaging

window (boxcar) and take theminimal fluorescence value in the inter-trial interval as the baseline. TheDF/F signals were calculated by

subtracting the baseline from the raw trace and dividing the difference by the baseline. We used the constrained deconvolution spike

inference algorithm (FOOPSI) in the CNMF package to infer the spikes (decay time constant 0.7 s). The deconvolved activity was then

smoothed using a Gaussian filter over a five-element sliding window.

We compared themeans of the response to odors A andB during the sample and delay epochs using aMann-Whitney U test. Each

trial contributed a scalar value: the average DF/F signal from t = 0-2.5 s from onset of the sample odor. Neurons were classified as

sample odor-selective if p < 0.01 (two-tailed, not corrected for multiple comparisons). Test odor and choice selectivity were

determined similarly using time bins of 2.5-4.0 s and 2.5-5.0 s from sample onset, respectively. Selectivity indices (SIs, Equation 1)

were computed from the same scalar values. The distributions of the sample odor SIs of ALM L2 neurons acquired with calcium

imaging and those of ALM neurons sampled by electrical recording were compared using a two-sample Kolmogorov-Smirnov test.

The standardized odor and choice selectivity (Figure 5A and S5A) were computed by dividing the absolute value of the difference

between the mean DF/F responses to odor A and B (or match and non-match) by the common standard deviation: the standard

deviation is the square root of the sum of the variances of the DF/F responses to odors A and B (or match and non-match).

To determine the duration of the calcium response, we first computed the mean and standard deviation of the baseline (the epoch

before stimulus onset). Calcium transients were then identified as any response greater than 2 standard deviations away from the

baseline and lasting for at least 100 ms. The peak time is the time of the maximum calcium response. Only the calcium transients

during the sample and delay epochs were considered in Figure 5E. We used identical methods to determine the duration and

peak time of the inferred spiking activity except that a minimal response duration was not required.

To ascertain whether the transient responses from L2 neurons occur at random times during the delay, we measured the pairwise

correlation in the peak times of the responses (Figure S6A). Statistical significance of each r-value was established using Fisher

z-transformed values and their s.e., without correction for multiple comparisons (gray shaded histograms, Figure S6B). We also esti-

mated the distribution of correlation coefficients expected under the null hypothesis, using a shuffle control. The calculations are

identical except each ordered pair from the two neurons comprises peak times from non-corresponding trials. The red dashed

distribution (Figure S6B) was estimated using 1000 iterations of this procedure.
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For the decoding analysis (Figure 6A-B), we trained a support vector machine (SVM) (Fan et al., 2008) using the calcium responses

to classify sample odor identity (Figure 6A) or match/nonmatch (Figure 6B). The calcium responses were computed as the average

DF/F in a sliding bin of 100 ms at 100 ms steps using 40 randomly selected neurons from each of the five cortical depths in ALM.

Wecharacterizeda trial-by-trial associationbetween theCa responsesof L2neuronsand the likelihood that themousewouldmakean

error. The signals themselves are indirectmeasurements of neural activity and highly skewed.We therefore applied a variant of a choice

probabilitymeasure,which is based onordinal statistics (Britten et al., 1996).We included 109 neurons that had statistically reliable pref-

erence for sample odorA orB using the integratedCa signal over the sample anddelay epochs.We includedboth correct and error trials

in determining the sample odor selectivity, to avoid biases favoring neurons with larger responses in correct trials due to random fluctu-

ation. For each neuron, the integrated signal was ranked and scored as a percentile ranking on (0,1] using the trials in which the sample

odorwas the preferred odor to form the vector of trial-by-trial responses for each neuron, rprefn , where the subscript identifies the neuron.

Thepercentileswereassigned for eachneuron independently (not thepopulation). Thepercentiles fromall theneuronswere thenpooled.

Weused thesameprocedureusing the responses toeachneuron’snonpreferredodor to form rnonn . Theheatmap inFigure6Ewas formed

by parametrically varying the two criteria, kpref and knon, to compute the proportion of errors when rpref < kpref and rnon > knon, using the

combined data from all 109 neurons (i.e., concatenating across all n). To evaluated the null hypothesis that these responses have

only a random association with the behavioral outcome, we conducted a simple logistic regression using the percentiles themselves:

Perr = f1+ expð � b0 � b1XÞg�1
(2)

Where X is the vector of the transformed percentiles:

X =

�
�rpref + 1

rnon

�
(3)

Note that the percentiles are simply reversed for rpref so that the larger percentiles correspond to theweakest responses.We report

the p value associated with {H0:b1 = 0g.

Behavior/inhibition data analysis
Mouse performance (P) was reported as the fraction of correct responses in all trials. Animals may perform below chance (50%) due

to ‘‘no choice’’ trials (e.g., when they are challenged with novel C/D 3 C/D pairs; Figure S1F). To assess the statistical reliability of

photoinhibition on P we generated the distribution of log probability ratio ðL Þ under the null hypothesis

H0 : L h log
Plaser

Pctrl

= 0 (4)

We randomly permuted the designations, correct/incorrect, among the laser and control trials within each trial type (AA/AB/BB/

BA), repeating the process 10,000 times. From this distribution, we obtain the two-tailed probability of obtaining L under H0.

To compare the effect of inactivation across tasks, we generated a distribution of L for each task by bootstrapping. The laser and

control trials were re-sampled respectively with replacement within each trial type (AA/AB/BB/BA). Repeating this process 10,000

times, we established a t-statistic from the means and variances of these distributions (degree of freedom based on the number

of experimental trials). The reported significance reflects one-tailed comparisons.

We used the following logistic model to characterize an animal’s bias. ‘‘No choice’’ trials in which animals did not respond were

excluded in this analysis (< 1% of trials).

Pleft = f1+ expð�QÞg�1
(5)
Q = b0 + b1SM + b2Ilaser + b3SMIlaser (6)

Where Pleft is the probably that the animal licks to the left port, SM is +1 or�1 if the trial is a match or non-match, respectively, and

Ilaser is 1 or 0 for laser on or off, respectively. The beta terms are fitted coefficients: b0 quantifies the bias in favor of left on control trials

in units of log odds; b0 + b2 quantifies the bias in laser-on trials; b1 quantifies how well the animal uses the match/non-match infor-

mation to determine the direction of licking (i.e., sensitivity to condition) on the control trials; and b1 + b3 quantifies the sensitivity in

laser-on trials. In awell-trained animal, b1 is always positive. Thus b2 is an estimate of the side bias induced by inactivation and b3 is an

estimate of the impairment on sensitivity by inactivation.

When trials from all the animals are combined in this analysis, the bias coefficients could be underestimated (b0, b2) because the

bias for left or right is different across experiments. It is theoretically possible that underestimation of the laser-induced bias, b2, could

lead tomisattribution of this effect to a laser-induced change in sensitivity, b3. To address this possibility, we first determined the bias

of each animal in the laser condition by comparing the rate of correct match and non-match trials. Based on this bias, we designated

left or right as the preferred lick port and match or non-match as the preferred trial for each animal. Then we combined the trials from

all the animals to fit the following modified model:

Ppref = f1+ expð�QÞg�1 (7)
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Q = b0 + b1Spref + b2Ilaser + b3Spref Ilaser (8)

Where Ppref is the probability that the animal licks to the preferred port, and Spref is +1 or�1 if the trial is preferred or non-preferred,

respectively. In this model, b2 estimates the side bias induced by inactivation across all sessions. Importantly, if inactivation only

biased the mouse to lick more to one port or the other—a different bias on each experiment—this procedure would fail to reject

the null hypothesis, H0: b3 = 0. We complemented this analysis using Monte Carlo methods to estimate the magnitude of impairment

on the task that is not accounted for by a bias to the left or right lick port.We simulated datasets using the estimated b coefficients and

their standard error, while setting b2 = 0. This recovers the proportion correct on the control trials and models the proportion correct

on the inactivation trials, were no bias induced by the laser. In Figure S4C, we show the distribution of impairments from 10,000

repetitions.

Attractor network models
We constructed recurrent neural network models consisting of three stages (Figure 7A): (1) primary sensory areas (e.g., Pir); (2)

intermediate areas; (3) ALM. Each stage a= 1;2; 3 contains N= 80 units whose activities are represented by anN-dimensional vector

xa and follow the dynamics

t
dxa

dt
= � xa + f

�
Jaxa + JFF

a xa�1 + shaðtÞ + ba

�
; a= 1;2; 3: (9)

Thematrices Ja and JFFa represent recurrent input and feedforward input from the previous area, respectively. The vector x0 is two-

dimensional, and its two elements are indicator variables (with value 1 or 0) representing the presence or absence of odors A and B.

The term shaðtÞ represents independent white noise input with standard deviation s. The vector ba represents the bias inputs to each

unit. The function f is rectified-linear and the time constant t (which represents combined membrane and synaptic time constants)

equals 100 ms.

In each trial, the network receives sample and test odors (A or B) for 500 ms each, beginning at times t = 1 and 3 s. Each trial is

drawn randomly from one of the four trial types. A readout of the network must classify the trial as match or non-match during the

response period, from t = 3:5 s to t = 4 s. The readout is a softmax function of the ALM activity x3. At the beginning of each trial,

the initial values of the xa vectors are taken to be independent rectified Gaussian random variables with standard deviation 0.05.

Networks are simulated with a timestep of 20 ms.

The networks are trained through gradient descent with TensorFlow and the Adam optimizer (Agarwal et al., 2016; Kingma and Ba,

2014) to minimize a loss L= Lclassifier + Lactivity determined by the classifier and an activity regularization term. Specifically, Lclassifier in a

given training epoch equals the summed cross-entropy loss between the classifier’s output and the desired output (match or non-

match) during the response period, averaged over a batch size of 50 trials. The regularization term Lactivity = 10�4$Ckrak2D is propor-

tional to the [2 norm of the activities averaged across units, time, areas, and batches. Every 50 epochs of training, the network is

tested on 1000 trials to determine its classification accuracy, and training ceases when this accuracy exceeds 95%. The noise s

equals 0.05 during training and 0:1 during this testing phase. The learning rate of the optimizer decreases logarithmically from

10�3 to 10�4 over 1000 epochs. Networks which do not reach the 95% criterion accuracy after these 1000 epochs are discarded.

At the beginning of training, all recurrent and feedforward weights Ja, J
FF
a are initialized as independent randomGaussian variables

with standard deviation 1=
ffiffiffiffi
N

p
(except for JFF0 , which has standard devation 1=

ffiffiffi
2

p
because of the dimension of x0). Half of the

feedforward weights are then randomly set equal to zero, representing sparser connections across areas versus within areas. The

softmax classifier weights are initialized with standard deviation 2=
ffiffiffiffi
N

p
, and the biases ba are initialized to zero. We assume that

only Ja and ba are learned. All other variables are fixed during training.

To generate the performance curves in Figure 7B, 60 trained networks were tested with s= 0:2 under four conditions. In the control

condition, the dynamics were identical to those described above. In the other conditions, which mimic ALM inactivation during

different epochs of the task, an inhibitory input was applied to ALM units during the sample and early delay epochs (the 1 s following

sample onset), the late delay period (the final 1 s of the delay epoch), or the entire sample and delay epochs. The inhibitory input was

equivalent to reducing the biases of all ALM units b3 by 5. To generate the curve for networks without ALM persistence, modifications

of Ja were restricted to only J1 and J2 while J3 was held fixed, so that the training algorithm could not learn to implement attractor

dynamics in ALM ða = 3Þ. Conversely, for networks with only ALM persistence, training was restricted to only J3, while J1 and J2 were

held fixed.

DATA AND CODE AVAILABILITY

The datasets and code are available upon request to the Lead Contact.
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