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Decisions are often made by accumulating evidence for and against the alternatives. The momentary evidence represented by sensory
neurons is accumulated by downstream structures to form a decision variable, linking the evolving decision to the formation of a motor
plan. When decisions are communicated by eye movements, neurons in the lateral intraparietal area (LIP) represent the accumulation of
evidence bearing on the potential targets for saccades. We now show that reach-related neurons from the medial intraparietal area (MIP)
exhibit a gradual modulation of their firing rates consistent with the representation of an evolving decision variable. When decisions were
communicated by saccades instead of reaches, decision-related activity was attenuated in MIP, whereas LIP neurons were active while
monkeys communicated decisions by saccades or reaches. Thus, for decisions communicated by a hand movement, a parallel flow of
sensory information is directed to parietal areas MIP and LIP during decision formation.
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Introduction
Many decisions benefit from the accumulation of evidence over
time and thus display features resembling deliberation and rea-
soning. This is true even for simple perceptual decisions, which
can be studied in animal models. In monkeys trained to discrim-
inate the direction of motion in a dynamic random-dot display,
neural correlates of evidence accumulation (Shadlen and New-
some, 1996; Huk and Shadlen, 2005), value (Platt and Glimcher,
1999; Rorie et al., 2010), probability (Yang and Shadlen, 2007),
and confidence (Kiani and Shadlen, 2009) have been identified in
the firing rates of neurons in the parietal and prefrontal associa-
tion cortex and in subcortical structures associated with the prep-
aration of eye movements (Horwitz and Newsome, 1999). In
these experiments, monkeys are typically trained to communi-
cate their decisions with an eye movement to a choice target.
Thus, it is not surprising that such neurons would indicate the
outcome of a decision. However, the more remarkable observa-
tion is that their graded firing rates represent the gradual forma-
tion of a decision—the transformation of momentary evidence
from vision to a categorical choice conveyed by the motor system.

To humans, perceptual decisions feel like they are about prop-
ositions (e.g., leftward or rightward) and not about the plan of
action used to communicate the choice, yet our decisions are
governed by an evidence accumulation process similar to the one
studied in monkeys (Smith and Ratcliff, 2004; Palmer et al., 2005;
Philiastides et al., 2006; Green et al., 2012; O’Connell et al., 2012).
Moreover, the accumulating sensory evidence that will ultimately
support one or the other choice—an evolving decision variable—
has been shown to flow continuously to motor structures in the
human brain much as it does in monkeys (McKinstry et al., 2008;
Selen et al., 2012; Ding and Gold, 2013). Because decisions can be
communicated in a variety of ways, it seems likely that many
brain areas could play a role in accumulating evidence toward a
choice. This raises the question of whether each area is recruited
selectively based on the required action or whether all potential
action circuits are recruited in parallel.

To begin to address this question, we trained rhesus monkeys
(Macaca mulatta) to indicate perceptual decisions with either a
hand or an eye movement while recording from neurons in the
medial or lateral intraparietal areas (MIP and LIP, respectively).
Just as LIP neurons signal the location of objects that are potential
objects of saccadic eye movements (Thier and Andersen, 1998),
MIP neurons signal the spatial location of objects that are poten-
tial targets of reach movements (Mountcastle et al., 1975; John-
son et al., 1996; Snyder et al., 1997; Batista et al., 1999; Eskandar
and Assad, 1999), as well as the outcome of decisions to direct the
arm in a particular direction (Snyder et al., 1997; Eskandar and
Assad, 1999; Scherberger and Andersen, 2007; Pesaran et al.,
2008). Therefore, we hypothesized that neurons in MIP would
represent the accumulation of evidence bearing on a decision
indicated by a hand movement. We sought to test this and to
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determine whether such decision-related activity arises selec-
tively in MIP and LIP, depending on the effector system used to
communicate the decision. We found that MIP neurons repre-
sent the accumulated sensory evidence in support of a decision
when the monkey indicated its choice with a hand movement.
Such decision-related activity was greatly attenuated in MIP
when the monkey used saccades to communicate choices. Inter-
estingly, on hand-movement trials, both LIP and MIP neurons
represented an evolving decision variable, consistent with parallel
decision mechanisms in the parietal cortex.

Materials and Methods
Two adult male rhesus monkeys (M. mulatta) participated in this study.
Both animals underwent extensive training on the random-dot motion
task. Monkeys were trained first in the saccade condition, then in the
reach condition, and finally in alternating blocks of saccadic and reach
movements. Experimental control and stimulus presentation were
achieved with either REX (Hays et al., 1982) in combination with the
Psychophysics toolbox (Brainard, 1997) or with EXPO (developed by
Peter Lennie, currently maintained by Rod Dotson, Center for Neural
Science at New York University, New York, NY; https://sites.google.com/
a/nyu.edu/expo/). All procedures conformed to the National Institutes
of Health Guide for the Care and Use of Laboratory Animals and were
approved by the University of Washington Institutional Animal Care
and Use Committee.

Behavioral testing. Monkeys were seated in front of a video screen
(LCD) equipped with an infrared touch-sensitive frame (viewing dis-
tance, 33 cm; ELO Touch Systems; Tyco Electronics). Eye position was
monitored by a video tracking system (Eyelink 1000; SR Research). Mon-
keys initiated trials by fixating a small point (FP; 0.5° diameter) and
touching, with the left hand, a larger circular spot (HOME; 4° diameter)
centered 15° below the FP. All intervals between events were randomized
using exponential distributions with resampling to conform to a speci-
fied range. Thus, after a short delay (200 –500 ms; median, 234 ms; ex-
ponential parameter, � � 50 ms), a pair of choice targets appeared to the
left and right of the FP in a location such that one was in the response field
(RF) of the neuron. After another random delay (500 –1000 ms; median,

600 ms; � � 100 ms), the random dot motion
appeared in a 6° aperture centered on the FP.
The direction and motion strength were ran-
domized to values �0.512, �0.256, �0.128,
�0.64, �032, 0, 0.32, 0.64, 0.128, 0.256, and
0.512, in which the sign indicates the direction
toward the RF and the value indicates the prob-
ability that a dot plotted at t � t0 will be dis-
placed 0.2° at t � t0 � 40 ms later (i.e., speed �
5° visual angle per second) or else replaced at a
random location. Viewing duration ranged
from 240 to 1000 ms (median, 450 ms; � � 400
ms). At the end of the motion stimulus, mon-
keys were required to maintain eye and hand
fixation until either of the fixation spots was
turned off (500 –1000 ms; median, 656 ms; � �
300 ms), cueing either an eye or hand move-
ment (Fig. 1). Until this point, monkeys were
required to maintain eye/hand fixation within
�1° of FP and �3.5° HOME and to sustain this
fixation criterion for the unused effector while
they indicated the choice with the other. The
same effector (eye or hand) was alternated in
blocks of �240 trials. Response effector was cued
by turning off the eye or hand FP (Fig. 1). We
discarded from the analyses the first trial after an
effector switch.

An instructed delay task was used for screen-
ing and selecting the neurons. In this task,
monkeys were required to make an eye or hand
movement to the remembered location of a
briefly flashed target that was either inside the

RF of the neuron (Tin) or in the opposite visual field (Tout). The monkeys
had to maintain the gaze and hand on their respective FPs until one or the
other disappeared at the end of the delay (1000 –1500 ms, truncated
exponential distribution), signaling the monkey to reach or look to the
remembered target. Monkeys were rewarded if the movement was suffi-
ciently accurate (�3° visual angle) and the other modality remained at
the fixation spot. Effector modality was used for a block of �60 consec-
utive trials.

Neural recording. Recording chambers were placed on the right pa-
rietal cortex at stereotaxic coordinates 6 mm posterior to ear bar zero
and 9 mm lateral to the midline. Extracellular recording electrodes
(Thomas) were advanced daily along the lateral and medial banks of
the intraparietal sulcus (IPS) in areas thought to correspond to the
ventral LIP (LIPv) and MIP based on stereotaxic coordinates and MRI
images obtained for each monkey with the chamber and electrode
grid in place. Spikes were isolated online and collected with a Plexon
system.

Neurons were classified as from MIP or LIP based on anatomical and
physiological criteria. Neurons on the medial bank of the IPS (MIP)
exhibited little if any modulation of neural activity with saccadic eye
movements and strong modulation of this activity accompanying spon-
taneous arm movements. Neurons on the lateral bank (LIPv) were mod-
ulated strongly by spontaneous eye movements (44 neurons in monkey
G and 36 in monkey T). Each of these regions occupied �8 mm 3 within
which we screened all isolated neurons for spatially selective persistent
activity on an instructed delayed reach or saccade task. We selected for
additional study only neurons that were clearly spatially selective by ear.
This was just under 50% of the neurons we encountered, and post hoc
receiver operating characteristic (ROC) analysis on memory saccades/
reaches (LIP/MIP) confirmed this selectivity (mean ROC area, 0.97 and
0.93 for LIP and MIP, respectively; 90% of neurons exceeded 0.75; n �
92). Neurons in MIP (46 in monkey G and 32 in monkey T) showed weak
visual responses and were only weakly modulated by saccades. They
activated strongly in the periods preceding a reach movement, and this
activation was spatially selective, with most RFs spanning an area be-
tween 15 and 20° in diameter centered between 10 and 25° of eccentricity
in the contralateral visual field. The weak visual response of MIP neurons

saccade trials reach trials

hand and eye fixation

choice targets onset

motion stimulus on

effector cue:
eye fixation or hand fixation turns off

choice
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} pre-stimulus delay ( 0.5 - 1 s )
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} post-stimulus delay ( 0.5 - 1 s )

neuron’s
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Figure 1. Monkeys were trained to indicate the direction of random-dot motion with either a hand or an eye movement. After
eye and hand fixation, two peripheral choice targets appeared, followed by the random-dot motion display centered at the FP. The
direction of motion (left or right), difficulty, and viewing duration were randomized from trial to trial. After a variable delay, either
the eye or hand fixation spot was extinguished, instructing the monkey to communicate its decision by looking or reaching to the
choice target. All correct trials and a random half of the 0% coherence motion trials were rewarded. The same effector was used for
blocks of �240 trials. The monkeys had to maintain fixation with the unused effector until reward delivery. During neuronal
recordings, one of the choice targets (termed Tin) was in the neuronal RF.
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is consistent with our recording locations, which targeted the more an-
terior part of MIP. A total of 133 of 148 neurons were recorded in at least
one reach and one saccade block.

Data analysis. The psychometric functions in Figure 2a are maximum
likelihood fits of a Weibull function (Quick, 1974) to data from all view-
ing durations:

Pcorrect�C� � 1 � 0.5e
�� C

�� �

, (1)

where � and � are fitted threshold and shape parameters, respectively,
and C is the motion coherence. We also fit a bounded drift-diffusion
model (Ratcliff, 1978; Gold and Shadlen, 2002; Bogacz et al., 2006) to
account for the variation in choice accuracy as a function of the duration,
strength, and direction of random-dot motion (Fig. 2c). A putative deci-
sion variable, V, is described by the stochastic differential equation:

dV � kC � dW, (2)

where C is motion strength (the sign indicates direction), and dW is the
standard Wiener process. The free parameter, k, establishes the drift rate.
A second free parameter, B, establishes symmetric decision bounds, such
that, if �V� � B, the decision terminates. For each stimulus duration, td,
the choice is either determined by the probability of terminating at �B
(for t 	 td) or by the sign of V(td) (i.e., when a bound is not reached). This
two-parameter model provides an estimate of the distribution of integra-
tion times, from which we calculate the means and SDs displayed in
Figure 2d. For the 0% coherence stimulus, just over 65% of the decisions
would have terminated by 240 ms, and 84% would have terminated by
the end of the full 360 ms epoch used in the variance analyses. Decision
termination does not necessarily imply termination of evidence integra-
tion by neurons (Mazurek et al., 2003; Resulaj et al., 2009), but it invites
caution against over-interpretation of the predicted variance and auto-
correlation at the later time bins in Figure 9.

To estimate the psychophysical kernel (Fig. 2b), we used 0% coherence
trials. For each random-dot movie, we extracted the opponent motion
energy (Adelson and Bergen, 1985) using filters identical to those in the
study by Kiani et al. (2008). From each of the resulting traces, we sub-
tracted the mean of the traces for the group identified by motion
strength/direction, monkey, task, and area. The sign of the resulting
residual traces was then flipped for negative-direction choices so that
each trace represents the residual motion energy in support of the choice
on that trial. It would be zero on average if decisions were independent of
the stimulus motion. The figure shows the mean � SEM of residuals, termed
the psychophysical kernel. It is important to note that the motion energy
filtering imposes a delay and rise time characterized by the “motion impulse”
response function shown in Figure 2b (blue curve; see legend).

The firing rate averages in Figures 7 and 8 were normalized using the
average delay period activity of each neuron, excluding the first 50 ms
(after motion offset) and the last 100 ms (before movement initiation).
For LIP cells, the normalization constant was obtained from the saccade
trials, whereas for MIP cells, the constant was obtained from the reach
trials. We used a two-step regression procedure to estimate the effect of
motion strength on buildup rate (see Figs. 7, 8, insets). First we fit lines to
the each of the firing rate functions, using the first 150 ms from the onset
of putative integration (see Figs. 7, 8, gray bars). The least squares fits use
normalized rates obtained in 15 independent 10 ms bins (i.e., before the
smoothing shown in the figure). The slope (i.e., buildup rate) and asso-
ciated SE are depicted by the symbols and error bars in the figure insets.
The lines shown in the insets are weighted least square fits to these
buildup rates. To address statistical significance, we evaluated the null
hypothesis that the data conform to a pair of constant buildup rates
associated with the two directions:

SBU � b0 � b1C � b2Idir � b3CIdir, (3)
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Figure 2. Analyses of behavioral data. a, Decision accuracy depends on the strength of motion but not on the effector modality used to report the choice. Points are the proportion correct for all
viewing durations. Sigmoidal curves are best fitting Weibull functions. The discrimination threshold is the motion coherence that supports a proportion correct � 0.816 (�; Eq. 1). The data are
shown separately for the two monkeys but combined henceforth. b, Time course over which fluctuations in stimulus motion information guides the decision about direction. Gray curve shows the
mean motion energy (�1 SEM) in support of the monkey’s choice on trials in which 0% coherence motion stimuli were shown. The blue curve shows the response to a single dot appearing at t �
0 and displaced in the positive direction 40 ms later (same 	x/	t as in the variable coherence display). Choices were affected most strongly by the first �250 ms of motion fluctuations in the noisy
display, and information continued to affect choices for longer durations on some trials. c, Accuracy increases as a function of motion strength and stimulus duration. Thin lines are running means
of the proportion correct. Smooth curves are fits to a model that assume noisy evidence is integrated to a termination threshold or bound. The behavior is best explained by perfect integration of
information presented early in the trial, consistent with the analysis in c. The rate of improvement and saturation are explained by variance in the termination times across trials and motion
strengths, as occurs in reaction time experiments. d, Decision times estimated from the bounded evidence accumulation model fit. Points are mean decision times predicted from the model. Error
bars indicate �1 SD.
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where BU indicates buildup, C is motion strength (signed, such that
positive C is toward Tin), Idir is an indicator variable, and bi are fitted
coefficients. For the inset to Figure 7, Idir � 1 for motion toward Tin and
0 otherwise. For the inset to Figure 8, Idir indicates choice (1 for Tin and 0
otherwise). The null hypothesis {H0: b1 � b3 � 0} was evaluated using an
F statistic. Note that we calculated the buildup rates using the first 150 ms
of decision-related activity (Figs. 7, 8, gray bars), before the curves exhibit
coherence-dependent saturation, although, as noted above, we think the
decision evolves over a longer duration on many trials.

We analyzed the time course of the firing rate variance and autocorre-
lation because these measures permit a glimpse of an underlying process
in which the instantaneous firing rate of parietal neurons reflect the
accumulation of noisy evidence from the visual cortex. The firing rate as
a function of time cannot be inferred precisely from single trials. How-
ever, across trials, it is possible to discern the hallmarks of an underlying
diffusion (or random walk) process from the variance and autocorrela-
tion of the spike counts. The approach, outlined by Churchland et al.
(2011), merges the theory of doubly stochastic processes with the laws of
total variance and covariance. The theory and estimation method are
described in detail in that study. The basic idea is to examine the spike
counts in the same short epoch over multiple trials and to subtract, from
the total variance, a theoretical component, termed the point process
variance (PPV), which is the variance that would be expected if the rates
were identical across trials. The remaining variance, termed the variance
of the conditional expectation (VarCE), captures the trial-to-trial varia-
tion in the underlying firing rates. To estimate the PPV, the mean count
is multiplied by an unknown constant, 
. Churchland et al. supplied
heuristics to approximate 
, but none are entirely satisfying.

For the present study, we used the theoretical values for the correlation
matrix of rates (or expected counts) to estimate 
, as follows. We divided
the first 360 ms of putative integration into six 60 ms spike-count bins.
For each bin, we used 0% coherence trials and calculated the mean and
residuals with respect to the mean (by neuron and effector modality). We
then combined the residuals and their associated means using Equation 6
from the study by Churchland et al. (2011) to estimate the VarCE, S
Ni�

2 , in
the six time bins under the four conditions (area by effector), given 
. We
computed the 6 � 6 covariance matrix using the same residuals and
substituted VarCE for the raw variances to obtain the CovCE matrix,
which we convert to a correlation matrix by dividing terms by �S
Ni�

2 S
Nj�
2 .

We searched for 
 that minimized the sum of squares (SS) of the differ-
ence zobs � ztheory, where z is the Fisher z-transform of the corresponding
r values. The SS were also used in a bootstrap analysis to compare effector
modalities and to compute the R 2 terms mentioned throughout. In ad-
dition to the theoretical r values from unbounded diffusion, we used
Monte Carlo methods to derive the theoretical r values from the bounded
drift-diffusion model used to fit the data (Fig. 2d). We assumed that
firing rates would remain constant from decision termination (i.e.,
bound crossing) forward. For early epochs, these r values are near those
of bounded diffusion, and the small difference in the fits favored un-
bounded diffusion (Bayesian information criterion comparison).

The VarCE plotted in Figure 9d uses the fitted 
 (one per area by
effector). Lines are weighted least squares fits, using SEs derived from a
standard bootstrap. For random walks, this should be a linear function of
time, but neither the slope nor the intercept of this line are constrained by
theory, at least not without additional assumptions. For this reason, the
15 predicted CorCE values furnish the stronger constraint on 
.

We used a bootstrap procedure to estimate the distribution of a sum of
square deviation (SS) of the 15 fitted CorCE values (Fisher
z-transformed) from their theoretical values. To compare the degree of
conformance to predicted values between saccade and reach trials for LIP
neurons, we compared the observed SS for reaches to the distribution of
SS under saccades. For MIP neurons, we performed the bootstrap using
the reach condition. This method supports what is evident by eye in the
graphs, as well as many other variants of the analyses we have performed.
We also performed a more sensitive bootstrap analysis that simply resa-
mples the observed correlation values without adherence to position in
the matrix (preserving symmetry). We generated 1000 valid (i.e., positive
definite) correlation matrices using the bootstrap. Again, we ask how
likely it would be to observe an SS statistic from our data under such a

random rearrangement of the pairwise correlation values. We report the
p value associated with the bootstrap (sample with replacement) but
observed a similar value ( p � 0.054) for a variant based on permutations
of the correlation values. We also compared the SS statistic to its expected
distribution from random correlation matrices conforming to uniform
distribution of r values over the observed range. We mention this test in
association with the MIP/saccade data, because rejection of H0 cautions
against overlooking structure to the pattern of autocorrelation even if it
does not conform to the expectations of drift diffusion. For the other
three conditions, rejection of H0 is not surprising ( p  0.001). We also
investigated the possibility that the failure to support integration in the
MIP/saccade data using the variance analyses might be attributed to weak
statistical power associated with low firing rates. This was confirmed by
simulation of datasets that approximated the firing rates in Figures 7 and
8 (0% coherence), matched for the number of trials and distribution of
trial durations, and evaluating for a significant positive slope of the
VarCE versus time relationship ( p  0.05). The lower firing rates are
associated with up to twice the rate of type II statistical error.

For the three analyses that focus on the epoch of putative integration
(two-step regression, variance, and autocorrelation), we focused on ep-
ochs beginning where the response functions begin to separate as a func-
tion of motion strength and direction (see Fig. 7). This was �212 � 8 ms
after motion onset for LIP neurons and 142 � 10 ms after motion onset
for MIP neurons (see the next paragraph). We also tried a variety of
approaches in which we varied the assumed start time or tailored it to the
firing rate functions for each neuron and effector modality. All of these
manipulations produce qualitatively similar results to those reported.
We also repeated the variance analyses using theoretical correlation co-
efficients based on the bounded drift-diffusion model fits to the behav-
ioral data (Fig. 2d), as noted above.

To estimate the latency at which decision-related activity emerged in
each area, we compiled distributions of spike counts associated with the
two strongest motion conditions in 20 ms counting windows and derived
a selectivity index (the area under the ROC). This index is a nonparamet-
ric measure of the degree of separation of the two distributions associated
with correct Tin and Tout choices; the index is 0.5 when the responses are
overlapping. We performed this analysis by pooling standardized re-
sponses of MIP neurons in the reach condition and of LIP neurons in the
saccade condition. The reported latencies are the times at which the ROC
index significantly departed from 0.5 for at least 50 ms ( p  0.05; Hanley
and McNeil, 1982). The SEs of the latencies were obtained by a bootstrap
procedure. The full time course of this choice selectivity index is shown in
Figure 6b.

Results
We recorded from single neurons in areas LIP and MIP of two
rhesus monkeys that were trained to judge the direction of mo-
tion of a dynamic random-dot display (Britten et al., 1992). Task
difficulty was varied by controlling stimulus viewing duration
and motion strength (percentage coherence; see Materials and
Methods). Monkeys communicated their decision about motion
direction by looking or reaching to a left or right choice target
(Fig. 1). For both effector modalities, the monkeys were required
to hold both the gaze and hand on fixation spots during motion
viewing and throughout an ensuing memory delay. When cued
to respond, the monkeys were allowed to activate only the appro-
priate effector modality (i.e., saccade or reach) while maintaining
continued fixation with the other. Effector modalities were alter-
nated in blocks of �240 trials.

We first examine the monkey’s accuracy and establish the
epoch in which integration of sensory evidence from the
random-dot display supports the monkey’s choices. We then de-
scribe a neural representation of accumulating evidence in areas
LIP and MIP.
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Behavior
For both monkeys, discrimination perfor-
mance was similar for saccade and reach
trials. Psychometric functions, which plot
the proportion of correct choices as a
function of motion strength, are nearly
superimposed for the two modalities, in
both monkeys (Fig. 2a). The comparison
of slopes of the psychometric curves failed
to reveal an effect of motor modality on
sensitivity (� term in Eq. 1; likelihood ra-
tio test, p � 0.57 and 0.58 for monkeys T
and G, respectively). Discrimination
thresholds from individual sessions varied
from day to day, but a pairwise compari-
son failed to reveal reliable differences in
thresholds regardless of effector modality
(p � 0.67 and 0.21, paired t test). This
negative result is important because it
suggests that any differences we observe in
the neural responses on reach and saccade
trials are unlikely to be explained by dif-
ferences in behavior or decision strategy.
It also justifies combining data across con-
ditions, as we do next to infer the time
window of decision formation.

Two analyses suggest that the monkeys
base their decisions on the accumulation
of motion evidence from the random-dot
display. The first exploits the random
fluctuations in the motion display itself.
Even for 0% coherence motion, the mon-
keys were influenced by fluctuations in
motion energy in the random dots. Al-
though, on average, the 0% coherence
stimulus supports neither direction, the
evidence is not neutral from moment to
moment and across trials. To quantify the
influence of these fluctuations on the mon-
keys’ choices, we extracted the motion en-
ergy profile (Adelson and Bergen, 1985;
Neri, 2004; Kiani et al., 2008; Resulaj et al.,
2009) as a function of time from the dis-
play of each trial, applying a sign convention such that positive
motion energy represents the direction chosen by the monkey at
the end of that trial. The average of these traces, termed the psy-
chophysical kernel (Neri, 2004; Fig. 2b, gray trace), shows an
influence of stimulus motion on choice. After correcting for the
delay introduced by the filters that extract motion energy (Fig. 2b,
blue trace), we infer that monkeys based their choices most
strongly on the information in the first 250 ms of stimulus view-
ing, whereas later motion fluctuations were influential to a lesser
degree.

This interpretation is further supported by the analysis in Fig-
ure 2c. We fit the monkeys’ choices as a function of two variables:
(1) viewing duration and (2) motion strength. The model, which
assumes perfect integration of evidence to a threshold or bound,
has been shown to account for the rate of improvement in accu-
racy as a function of both variables (Kiani et al., 2008; Tsetsos et
al., 2012). The bound explains the curtailment in improvement
in accuracy at longer viewing durations, seen as a flattening of the
curves in Figure 2c. Indeed, consistent with the preceding analysis
(Fig. 2b), most of the improvement explained by integration was

attained by the time of the first sample of the running mean in
Figure 2c. From this bounded accumulation model, we can esti-
mate the mean integration time and its SD for each motion
strength (Fig. 2d). For the lowest motion strengths, the model fit
shows that mean integration times are �250 ms, consistent with
the integration times inferred from the psychophysical kernel
(Fig. 2b). The large SDs (error bars) are consistent with the pro-
longed tail of the kernel.

Together, these analyses establish that the monkeys integrate
motion evidence to reach their decisions, and they do this based
primarily on the information presented early in the trial. The
results establish a window of time in which to focus our analysis
of the neural activity accompanying decision formation.

Neuronal activity in MIP and LIP
As the monkeys performed the discrimination task, we recorded
the activity of neurons in the medial and lateral banks of the IPS
(Fig. 3). Neurons were first screened using an instructed memory
delay task— either a delayed saccade or a delayed reach to the
remembered location of a briefly flashed target in the periphery of
the visual field. Neurons were selected for additional study if they
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Figure 3. Location of recording sites. a, The vertical line in the diagram (top) marks the approximate location of the coronal
magnetic resonance image (bottom), 6 mm posterior to the interaural line. b, The recording chamber containing a saline-filled grid
is visible above the IPS. The MRI was obtained on a 1.5 T scanner using a short T1 inversion-recovery sequence. Cranial screws
(titanium) caused the susceptibility artifact, which appear as black indentations of the cortex on either side of the recording
chamber. c, The recording location of MIP (blue) and LIP (red) neurons is plotted in stereotactic coordinates and projected to MRI
slices oriented parallel to the recording chamber (top and bottom corresponds to monkeys G and T, respectively). Locations were
assessed by registration and are therefore only approximate.
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showed spatially selective persistent activity in preparation for
saccades or reaches or both, such that a preferred and nonpre-
ferred location could be discerned easily by listening to the spik-
ing activity (see Materials and Methods). As shown by the
response averages in Figure 4, a and b, the MIP neurons selected
for additional study exhibited this property during memory-
guided hand and eye movements, although responses were
weaker on eye-movement blocks (p � 0.0058, t test; n � 48). The
absence of a visual response to the onset of visual targets is con-
sistent with the anterior location of our recordings in MIP, pos-
sibly at the border of MIP/5v (Hwang et al., 2012). LIP neurons
were approximately equally responsive on both memory-guided
saccades and reaches (Fig. 4c,d), and this similarity was also rep-
resentative of the population of single neurons in our sample
(p � 0.32, t test; n � 51). It is this spatial selectivity, maintained
over the �1 s of memory delay, that we exploit to study the neural
correlates of decision formation.

In the motion discrimination task, one of the choice targets
was positioned inside the RF of the neuron and the other in the
opposite hemifield (Tin and Tout, respectively). The position of
the targets and the random-dot motion display were maintained
through alternating blocks of trials in which the monkeys indi-
cated their decisions by moving the hand or the eyes. Within
these blocks, the different motion strengths, directions, and in-
terevent intervals were randomized.

Responses from representative LIP and MIP neurons are
shown in Figure 5. Trials are grouped by behavioral choice and
ordered by motion direction and strength to facilitate visualiza-
tion of important features. Spikes are aligned to three trial events:
(1) display of the choice targets, (2) onset of random-dot motion,
and (3) movement initiation. The example LIP neuron had a

strong visual response to the onset of the
choice targets, followed by a more modest
sustained activity until the onset of
random-dot motion. The example MIP
neuron did not respond to the onset of the
choice targets, and its activity remained at
background level until motion onset. Ap-
proximately 150 ms after random-dot
motion onset, the LIP neuron was mo-
mentarily suppressed to a level below back-
ground—a “dip”—followed by a rise in
firing rate on trials in which the monkey
chose Tin or followed by some degree of
continued suppression on the trials in which
the monkey chose Tout. Both the increase
and decrease of firing rates were most evi-
dent on trials when the strongest motion
was displayed, and they were similar for sac-
cade and reach blocks. Motion also induced
graded increases and decreases in the firing
rate of the MIP neuron on trials in which the
monkey indicated its decision with a hand
movement. The pattern of responses during
motion viewing was similar to that of the
LIP neuron. Note that both neurons were
more active during the hand-movement
blocks and that the MIP neuron was less ac-
tive during eye-movement trials.

The final epoch depicted in Figure 5
encompasses the late memory delay and
movement. Here, both example neurons
responded in a manner that reflected the

choice for Tin or Tout. Whereas the LIP neuron responded
strongly for both response modalities, the MIP neuron barely
modulated its firing rate on eye-movement trials. On hand-
movement blocks, both the MIP and LIP neurons sustained ac-
tivity through the movement. On eye-movement blocks, the LIP
neuron emitted a burst of spikes in the immediate perisaccadic
epoch (�100 to 50 ms relative to saccade initiation) accompany-
ing Tin saccades. The postsaccadic responses after Tout saccades
might be related to the trace of the fixation spot, only just extin-
guished, which has been translated to the RF of the neuron. The
MIP neuron did not modulate its response in the perisaccadic or
peri-reach intervals.

The qualitative features illustrated by the two example neu-
rons are representative of the population of neurons we recorded.
Neurons in both LIP and MIP were more active during reach
trials (p  0.01 in both areas and both monkeys), and MIP neu-
rons attenuated their firing rate during the saccade blocks (Fig.
6a). Whereas the latter observation conforms to the prediction
that MIP neurons are recruited during planned reaches, the in-
crease in the firing rate of LIP neurons in the reach block is
somewhat surprising. The increase was not simply a global
change in firing rate level because it was accompanied by greater
selectivity. As shown in Figure 6b, LIP responses associated with
Tin and Tout choices achieved greater selectivity (less overlap of
the distributions of firing rates associated with the two choice
types on the easiest motion conditions). In other words, they
were more predictive of reach choices. Interestingly, this predic-
tive activity evolved over a similar timeframe for saccade and
reach trials (compare curves in Fig. 6b). We will examine these
dynamics in greater detail below. However, it is worth noting the
predictive activity in MIP on reach trials emerged 70 ms earlier
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Figure 4. Activity of neurons during a delayed center-out task. Monkeys were required to shift the gaze or hand to the
remembered location of a briefly flashed target. Average firing rates are shown for target locations used in the main discrimination
task, inside (Tin) or outside (Tout) the RF of the neuron. a, b, Response averages from 48 MIP neurons recorded in reach and saccade
blocks, respectively. c, d, Response averages from 51 LIP neurons recorded in reach and saccade blocks, respectively.

de Lafuente et al. • Accumulation of Sensory Evidence in Parietal Cortices J. Neurosci., March 11, 2015 • 35(10):4306 – 4318 • 4311



than in LIP (142 � 10 vs 212 � 8 ms for MIP and LIP, respec-
tively; see Materials and Methods).

For the remainder of this study, we will focus on the neural
correlates of decision formation in the epoch after onset of visual
motion in which the monkeys are accumulating evidence from
the random-dot display. We hypothesized that parietal neurons
reflect this accumulation.

Representation of a decision variable in MIP and LIP
A decision variable is a quantity that tracks the accumulation of
evidence leading to a decision, possibly combined with other
factors, such as previous expectation of outcome, reward, and
cost (Gold and Shadlen, 2007). Because of our selection criteria,
we are not surprised to learn that LIP and MIP neurons represent
the outcome of decisions indicated by an eye or hand movement

to Tin, respectively. The question is what transpires in the epoch
in which the decision is forming. To facilitate the comparison
between parietal areas (LIP vs MIP) and response modalities
(reaches vs saccades), we will present the results of our analyses in
a 2 � 2 format, with rows designating recording area and col-
umns designating effector modality. Figure 7 shows average fir-
ing rates for 148 neurons, normalized to the firing rate of each
neuron in the delay period preceding Tin reaches or saccade. Each
trace corresponds to a motion strength and direction, and each
comprises trials leading to both Tin and Tout choices. These firing
rates exhibit a gradual rise or decline and a clear dependence on
the strength and direction of motion. We estimated the rate of
this rise or decline by fitting lines to the response averages in the
150 ms epoch from the earliest point that these trends appear to
emerge (see Materials and Methods). The slopes of these lines,
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Figure 5. Responses from two representative neurons recorded during the motion discrimination task. Each row of black dots mark the times of action potentials with respect to onset of targets
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termed buildup rates, are approximately proportional to the mo-
tion strength (Fig. 7, insets), consistent with the hypothesis that
the firing rates represent the accumulated difference in motion
evidence from opposing pools of motion-sensing neurons, such
as those in middle temporal area MT (Shadlen and Newsome,
1996, 2001; Mazurek et al., 2003; Huk and Shadlen, 2005). The
linear fits are highly reliable for all figure insets (p  0.0003).

The traces shown in Figure 7 are most apposite to the repre-
sentation of a decision variable whose trial-by-trial instantiation
could lead to either choice. This mixture of choices varies as a
function of motion direction and strength, raising the concern
that the effect of motion strength is explained by different mix-
tures of just two buildup rates, associated Tin and Tout choices,
respectively. To address this, Figure 8 depicts the responses
grouped by motion strength, direction, and choice. For nonzero
coherences, these are the same data with the errors removed, and
for 0% coherence, the data are divided into trials ending in Tin

and Tout choices. This grouping allows us to ask whether motion
strength affects the parietal firing rates even for trials in which the
monkey makes the identical choice. This grouping of the re-
sponses shows the evolution of choice-related activity (compare
solid and dashed curves), but there is still an effect of motion
strength (indicated by color) that can be deduced from the order-
ing of the responses. The pattern is subtle for MIP on saccade
blocks, but it is supported by the analysis of buildup rates (Fig.
7, insets). Were the effect of motion strength on buildup rate
explained by different mixtures of Tin and Tout choices (Fig. 7),
then the insets in Figure 8 should appear as a pair of flat lines.
This possibility is rejected for each of the four insets ( p 
0.006; Eq. 3).

Together, these analyses of average firing rates support a rep-
resentation of a decision variable in both LIP and MIP during
both hand- and eye-movement blocks. The responses appear
equally robust in LIP and MIP on the reach blocks, whereas MIP
responses are weaker than those of LIP during the saccade blocks.
This discrepancy led us to question whether MIP neurons actu-
ally reflect a decision variable, and, if so, why it is so much less
robust. Our working hypothesis is that the decision variable is
itself the accumulation of noisy evidence from direction-selective
neurons in area MT and medial superior temporal area MST,
which represent the momentary evidence for one direction or the
other. Such an accumulation of noisy evidence has been likened
to a random walk or diffusion process (Ratcliff, 1978; Gold and
Shadlen, 2002). Accordingly, the firing rate traces represented by
the curves in Figure 7 represent averages over trials whose under-
lying rates resemble the paths of diffusing particles. However,
these response averages obscure the variation in firing rates
across trials and as a function of time. A more stringent test of our
hypothesis is that the firing rates on single trials should resemble
the random path of a particle undergoing drift diffusion. Evi-
dence bearing on this hypothesis may be discerned from an anal-
ysis of second-order statistics (e.g., variance and autocorrelation)
of the firing rates.

A diffusion-like mechanism
Although it is not possible to discern the firing rate paths from the
spike trains on individual trials, we can ask whether the second-order
statistics of firing rates are consistent with the expectation from a
diffusion process. To do so, we examined the change in spike count
variance, across trials, as a function of time from the start of the
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putative accumulation (Churchland et al., 2011). This is because the
variance of the accumulation of independent samples, as in diffu-
sion, should increase as a function of time. Moreover, for a diffusion
process, the correlation coefficient between the spike counts in time
bin ti and some later time bin tj � i is rij � �i/j (Fig. 9a).

As explained in Materials and Methods, the pattern of auto-
correlation as both a function of lag time (Fig. 9a, rows) and time
itself (Fig. 9a, diagonals) poses the more stringent test of an un-
derlying random walk or diffusion process. For both the variance
and autocorrelation tests, the challenge is to factor out the com-
ponent of the measured spike count variance that would be evi-
dent in MIP and LIP even if there were no trial-to-trial variance of
the underlying rates. Estimation of this component of the vari-
ance, termed the PPV, depends on an unknown parameter 
. We
chose the value of 
 that provided the best fit to the 15 correlation
coefficients expected from theory, using six 60 ms spike count
windows that span the first 360 ms of putative integration. We
did this for each of the parietal areas and each effector modality,
as shown in Figure 9.

The pattern of autocorrelations obtained from the LIP record-
ings was similar to the theoretical values for both effector modal-
ities (Fig. 9b,c; R 2 � 98.1 and 98.9%, for saccade and reaches,
respectively), and conformance was not reliably better for either
effector (p � 0.72, bootstrap; see Materials and Methods). The
pattern of autocorrelations in the MIP recordings conformed to

the predictions of diffusion during hand-movement blocks but
not during eye-movement blocks (Fig. 9b,c; R 2 � 98.8 and 90.2%
for reaches and saccades, respectively). In the latter case, there
was some structure to the autocorrelation that could be distin-
guished from chance (p  0.03, bootstrap; see Materials and
Methods), but conformity to diffusion was clearly superior for
the reach blocks (p  0.02). Indeed, the error statistic for the
MIP/saccade dataset was outside the 98% confidence interval
using any of the other three conditions.

We draw a similar conclusion from the time course of the
response variance. Using the best estimate of 
 from the autocor-
relation analysis, we extracted the observed variance in each of
the six time bins. If the LIP firing rate reflects the accumula-
tion of noisy evidence, then the variance, termed the VarCE
(see Materials and Methods), should be proportional to time.
As shown in Figure 9d, the pattern of variance conforms rea-
sonably well to linear increases for saccade and reach blocks
( p  0.0005 and p  0.02, respectively, F test), whereas MIP
exhibits this pattern for reach blocks only ( p  0.0002). The
pattern clearly fails to conform to a linear rise on the saccade
blocks ( p � 0.41). Although the patterns of variance and au-
tocorrelation are strikingly different in MIP for the two effec-
tor modalities, this difference might simply reflect the lower
firing rates of MIP neurons on saccade blocks (see Materials
and Methods).
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Together, these analyses allow us to appreciate that the firing
rate functions plotted in Figure 7 are the means of diffusion
paths, as predicted by the drift-diffusion model (Link, 1975; Rat-
cliff, 1978; Gold and Shadlen, 2001). Moreover, for decisions
communicated by hand movements, at least two parietal regions
represent the accumulation of noisy sensory evidence leading to a
decision.

Discussion
To make even simple perceptual decisions, the brain must gather
the appropriate evidence bearing on the alternatives and then
operate on this evidence to commit to a choice. The random-dot
motion task is useful for studying this process because (1) its
solution requires integration of evidence across space and time
and (2) a neural representation of the momentary evidence has
been established in areas MT and MST (Salzman et al., 1990;
Celebrini and Newsome, 1994; Ditterich et al., 2003). To make a
decision, the brain accumulates this momentary evidence in
time until some termination criterion is met or until the evi-
dence runs out.

Under conditions in which a monkey communicates its deci-
sion with an eye movement, a neural representation of the accu-
mulated evidence has been demonstrated in area LIP, the frontal
eye fields, the superior colliculus, and the dorsolateral prefrontal
cortex (Horwitz and Newsome, 1999; Gold and Shadlen, 2000,
2007; Ding and Gold, 2012). In particular, LIP is known to rep-
resent the accumulated evidence, combined with other factors
that affect the decision, such as the previous probability, value,

and costs associated with the alternatives (Seo et al., 2009; Rorie et
al., 2010; Hanks et al., 2011; Drugowitsch et al., 2012). The com-
bined quantity is termed a decision variable because application
of a simple criterion to this quantity would render a commitment
to a choice. A neural representation of a decision variable in LIP
and other oculomotor areas suggests that the motor system is not
recruited once a decision is made but instead receives a continu-
ous flow of partial information—an evolving decision variable
(Gold and Shadlen, 2007; McKinstry et al., 2008; Cisek and
Kalaska, 2010; Selen et al., 2012).

The present findings extend this principle to the hand-
reaching system of the parietal cortex. Our observations comple-
ment previous studies of MIP and the parietal reach region
(PRR), which demonstrated choice-related activity in MIP (Sny-
der et al., 1997; Eskandar and Assad, 1999; Scherberger and An-
dersen, 2007; Pesaran et al., 2008). In light of these studies, it is
not surprising that MIP neurons would represent the outcome of
a decision process when the choice is indicated by a hand move-
ment. The important finding here is that MIP activity tracks the
decision variable—the partial evidence as it is being accumulated
to reach a decision.

Experimental support for the representation of a decision
variable is based on three related observations. First, monkeys
availed themselves of the evidence in the visual display by inte-
gration of evidence (Fig. 2). The psychophysical kernel supports
the use of the very earliest information—the strategy promoted
by the design the random-dot display and by the exponential
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distribution of viewing durations—and
the improvement in performance with
viewing duration suggests that, for low co-
herence trials, integration extends to at
least 300 ms on a substantial proportion
of trials. Second, the mean firing rates re-
flect the accumulation of evidence in a
corresponding epoch (Figs. 7, 8). Both
LIP and MIP neurons exhibit changes in
the mean firing rates that reflect the
strength and direction of motion (Figs. 7,
8), and this relationship is not explained
trivially by different mixtures of high and
low firing rates associated with Tin and
Tout choices (Fig. 8). Third, variance and
within-trial autocorrelation of the firing
rates evolve in a manner that is consistent
with a biased random walk or drift-
diffusion process. Thus, the firing rates on
individual trials appear to instantiate an
accumulation of both signal and noise.
This third level of support is absent for the
analysis of MIP responses during saccade
blocks (Fig. 9).

Perhaps it is not surprising that
decision-related activity is weak in MIP
when decisions are communicated by eye
movements, but such effector specificity
did not hold for LIP, which showed
greater activation for hand-movement
trials. The finding contradicts the simplis-
tic notion that the posterior parietal cor-
tex is parceled into specific premotor
domains. Indeed, careful reading of stud-
ies that support motor specialization
(Snyder et al., 1997; Cui and Andersen,
2011) attests to only a relative preference
for modality, as these investigators have
emphasized (Andersen and Cui, 2009).
The recruitment of saccade-related neu-
rons during reach movements has been
interpreted in the past as a sign of allocation of spatial attention
(Robinson et al., 1978; Bushnell et al., 1981; Wardak et al., 2004)
and also as reflecting covert eye movements that might occur
were the monkeys not required to hold fixation away from the
reach target (Snyder et al., 1997, 1998; Colby and Goldberg,
1999). After all, we often look at what we touch, but we cannot
touch most of what we see. Although the present findings support
a degree of modality specificity in many MIP neurons, we cannot
say whether this would hold for other parts of the PRR, in which,
for example, neurons are reported to exhibit stronger responses
to visual targets.

The representation of a decision variable in two areas could
arise several ways. Input and output connection patterns of LIP
and MIP place these areas at approximately the same level in the
hierarchy of visual information processing (Felleman and Van
Essen, 1991; Lewis and Van Essen, 2000a,b). They both receive
input from lower visual areas, enabling them to independently
accumulate sensory information and compute decisions. How-
ever, they also receive input from higher cortical areas (e.g., dor-
solateral prefrontal cortex), opening the possibility that they
might be receiving a copy of a decision variable assembled first in
these areas. Indeed, the representation of an evolving decision

variable in areas LIP and MIP does not imply that the ontogeny of
such signals is within those areas. An interesting possibility is that
higher cortical areas help to gate the flow of evidence to MIP and
LIP or control the processing of such evidence within these areas.

There is some indication in our data that decision-related
activity was present in MIP earlier than in LIP (142 � 10 and
212 � 8 ms, respectively; Fig. 6b; see Materials and Methods).
Therefore, it is possible that MIP is the source of decision-related
signals in LIP on the reach trials. However, this is unlikely on the
saccade trials, because MIP activity is so much weaker and lacks
signatures of integration, which were evident in LIP. Other dis-
similarities between LIP and MIP (e.g., visual responses to tar-
gets; Figs. 4, 5) and the similarity of LIP dynamics for both
response modalities render unlikely the possibility that decision-
related activity in LIP is merely a delayed replica of MIP activity.
Simultaneous recordings from the two areas will resolve this, but
it seems highly likely that there are at least two partially indepen-
dent representations of a decision variable in the parietal cortex
during reach trials.

The representation of a decision variable in two cortical areas
supports the idea that analysis of sensory information occurs in
circuits associated with provisional behavioral responses to stim-
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step of its evolution (i�1–5; j�2– 6). Six time steps are shown to correspond with the same number of time bins applied to data.
Heat map displays the values of the 15 predicted r values (i.e., the unique r values of the 6 � 6 correlation matrix). Notice that
correlation between bins decreases as a function of the time lag between them (dashed line), and correlations separated by the
same lag become increasingly correlated at later times (solid line). b, Autocorrelation matrices from MIP and LIP. The 2 � 2
arrangement is identical to the area by effector table in previous figures. To calculate these correlations, an unknown constant, 
,
was derived to achieve the best fit to the 15 predicted r values (for details, see Results). Same color map as in a. c, Comparison of
autocorrelation value from data (symbols) and theory (lines). These are the top row and first juxtadiagonal as indicated by
corresponding line style in a. d, Variance of the rates across trials using the same six time epochs. For a discrete, unbounded
diffusion process, these variances should increase linearly as a function of time. The variance estimates use the value of 
 derived
from the autocorrelation. Note the different scale for the LIP reach graph. Error bars in c and d are SDs obtained from a bootstrap
procedure.
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uli (Schall, 2001; Romo et al., 2004; Rorie and Newsome, 2005;
Gold and Shadlen, 2007; Lemus et al., 2007; Andersen and Cui,
2009; Cisek and Kalaska, 2010; Hernández et al., 2010; Westen-
dorff et al., 2010), which has been termed an intentional—as
opposed to representational—framework for information pro-
cessing (Shadlen et al., 2008; Cisek and Kalaska, 2010). We do not
want to postulate that LIP and MIP are areas specialized for rep-
resenting eye- and arm-related decisions, nor that they are the
only structures doing so. It is also important to note that our
experiments were not designed to test effector specificity, and our
results might be specific to LIPv and anterior MIP (Liu et al.,
2010). However, we find noteworthy that these two parietal areas
represent a computation related to those decisions, and we spec-
ulate that their activity is relevant to processing in structures to
which LIP and MIP project. This is not the type of parallel pro-
cessing that is often associated with neural networks (Rumelhart
and McClelland, 1986) or computer systems but is instead a di-
rect representation (Barlow, 1995) of a decision variable in the
firing rates of neurons. Such parallel processing raises intriguing
issues. Might it be possible for two areas to disagree on an answer
or are they necessarily coordinated by the stimulus, sensory rep-
resentation, or some other common input? A definitive answer
awaits simultaneous recording from both areas.
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correlates of a postponed decision report. Proc Natl Acad Sci U S A 104:
17174 –17179. CrossRef Medline

Lewis JW, Van Essen DC (2000a) Corticocortical connections of visual, sen-
sorimotor, and multimodal processing areas in the parietal lobe of the
macaque monkey. J Comp Neurol 428:112–137. CrossRef Medline

Lewis JW, Van Essen DC (2000b) Mapping of architectonic subdivisions in
the macaque monkey, with emphasis on parieto-occipital cortex. J Comp
Neurol 428:79 –111. CrossRef Medline

Link S (1975) A sequential theory of psychological discrimination. Psy-
chometrika 40:77–105. CrossRef

Liu Y, Yttri EA, Snyder LH (2010) Intention and attention: different func-
tional roles for LIPd and LIPv. Nat Neurosci 13:495–500. CrossRef
Medline

Mazurek ME, Roitman JD, Ditterich J, Shadlen MN (2003) A role for neural
integrators in perceptual decision making. Cereb Cortex 13:1257–1269.
CrossRef Medline

McKinstry C, Dale R, Spivey MJ (2008) Action dynamics reveal parallel
competition in decision making. Psychol Sci 19:22–24. CrossRef Medline

Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975)
Posterior parietal association cortex of the monkey: command functions

de Lafuente et al. • Accumulation of Sensory Evidence in Parietal Cortices J. Neurosci., March 11, 2015 • 35(10):4306 – 4318 • 4317

http://dx.doi.org/10.1364/JOSAA.2.000284
http://www.ncbi.nlm.nih.gov/pubmed/3973762
http://dx.doi.org/10.1016/j.neuron.2009.08.028
http://www.ncbi.nlm.nih.gov/pubmed/19755101
http://dx.doi.org/10.1126/science.285.5425.257
http://www.ncbi.nlm.nih.gov/pubmed/10398603
http://dx.doi.org/10.1037/0033-295X.113.4.700
http://www.ncbi.nlm.nih.gov/pubmed/17014301
http://dx.doi.org/10.1163/156856897X00357
http://www.ncbi.nlm.nih.gov/pubmed/9176952
http://www.ncbi.nlm.nih.gov/pubmed/1464765
http://www.ncbi.nlm.nih.gov/pubmed/7288463
http://www.ncbi.nlm.nih.gov/pubmed/8027765
http://dx.doi.org/10.1016/j.neuron.2010.12.037
http://www.ncbi.nlm.nih.gov/pubmed/21338889
http://dx.doi.org/10.1146/annurev.neuro.051508.135409
http://www.ncbi.nlm.nih.gov/pubmed/20345247
http://dx.doi.org/10.1146/annurev.neuro.22.1.319
http://www.ncbi.nlm.nih.gov/pubmed/10202542
http://dx.doi.org/10.1523/JNEUROSCI.6247-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/22159124
http://dx.doi.org/10.1093/cercor/bhr178
http://www.ncbi.nlm.nih.gov/pubmed/21765183
http://dx.doi.org/10.1016/j.neuron.2013.07.042
http://www.ncbi.nlm.nih.gov/pubmed/23972593
http://dx.doi.org/10.1038/nn1094
http://www.ncbi.nlm.nih.gov/pubmed/12858179
http://dx.doi.org/10.1523/JNEUROSCI.4010-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22423085
http://dx.doi.org/10.1038/4594
http://www.ncbi.nlm.nih.gov/pubmed/10195185
http://dx.doi.org/10.1093/cercor/1.1.1
http://www.ncbi.nlm.nih.gov/pubmed/1822724
http://dx.doi.org/10.1038/35006062
http://www.ncbi.nlm.nih.gov/pubmed/10746726
http://dx.doi.org/10.1016/S0896-6273(02)00971-6
http://www.ncbi.nlm.nih.gov/pubmed/12383783
http://dx.doi.org/10.1146/annurev.neuro.29.051605.113038
http://www.ncbi.nlm.nih.gov/pubmed/17600525
http://dx.doi.org/10.1016/S1364-6613(00)01567-9
http://www.ncbi.nlm.nih.gov/pubmed/11164731
http://dx.doi.org/10.1523/JNEUROSCI.0573-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23100417
http://dx.doi.org/10.1523/JNEUROSCI.5613-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21525274
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
http://dx.doi.org/10.1016/j.neuron.2010.03.031
http://www.ncbi.nlm.nih.gov/pubmed/20435005
http://dx.doi.org/10.1126/science.284.5417.1158
http://www.ncbi.nlm.nih.gov/pubmed/10325224
http://dx.doi.org/10.1523/JNEUROSCI.4684-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/16280581
http://dx.doi.org/10.1016/j.neuron.2012.10.030
http://www.ncbi.nlm.nih.gov/pubmed/23217749
http://dx.doi.org/10.1093/cercor/6.2.102
http://www.ncbi.nlm.nih.gov/pubmed/8670643
http://dx.doi.org/10.1126/science.1169405
http://www.ncbi.nlm.nih.gov/pubmed/19423820
http://dx.doi.org/10.1523/JNEUROSCI.4761-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18354005
http://dx.doi.org/10.1073/pnas.0707961104
http://www.ncbi.nlm.nih.gov/pubmed/17940014
http://dx.doi.org/10.1002/1096-9861(20001204)428:1<112::AID-CNE8>3.0.CO;2-9
http://www.ncbi.nlm.nih.gov/pubmed/11058227
http://dx.doi.org/10.1002/1096-9861(20001204)428:1<79::AID-CNE7>3.0.CO;2-Q
http://www.ncbi.nlm.nih.gov/pubmed/11058226
http://dx.doi.org/10.1007/BF02291481
http://dx.doi.org/10.1038/nn.2496
http://www.ncbi.nlm.nih.gov/pubmed/20190746
http://dx.doi.org/10.1093/cercor/bhg097
http://www.ncbi.nlm.nih.gov/pubmed/14576217
http://dx.doi.org/10.1111/j.1467-9280.2008.02041.x
http://www.ncbi.nlm.nih.gov/pubmed/18181787


for operations within extrapersonal space. J Neurophysiol 38:871–908.
Medline

Neri P (2004) Estimation of nonlinear psychophysical kernels. J Vis 4:82–91.
CrossRef Medline

O’Connell RG, Dockree PM, Kelly SP (2012) A supramodal accumulation-
to-bound signal that determines perceptual decisions in humans. Nat
Neurosci 15:1729 –1735. CrossRef Medline

Palmer J, Huk AC, Shadlen MN (2005) The effect of stimulus strength on
the speed and accuracy of a perceptual decision. J Vis 5:376 – 404.
CrossRef Medline

Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision
circuit between frontal and parietal cortex. Nature 453:406 – 409.
CrossRef Medline

Philiastides MG, Ratcliff R, Sajda P (2006) Neural representation of task
difficulty and decision making during perceptual categorization: a timing
diagram. J Neurosci 26:8965– 8975. CrossRef Medline

Platt ML, Glimcher PW (1999) Neural correlates of decision variables in
parietal cortex. Nature 400:233–238. CrossRef Medline

Quick RF Jr (1974) A vector-magnitude model of contrast detection. Kyber-
netik 16:65– 67. CrossRef Medline

Ratcliff R (1978) A theory of memory retrieval. Psychol Rev 85:59 –108.
CrossRef

Resulaj A, Kiani R, Wolpert DM, Shadlen MN (2009) Changes of mind in
decision-making. Nature 461:263–266. CrossRef Medline

Robinson DL, Goldberg ME, Stanton GB (1978) Parietal association cortex
in the primate: sensory mechanisms and behavioral modulations. J Neu-
rophysiol 41:910 –932. Medline

Romo R, Hernández A, Zainos A (2004) Neuronal correlates of a perceptual
decision in ventral premotor cortex. Neuron 41:165–173. CrossRef
Medline

Rorie AE, Gao J, McClelland JL, Newsome WT (2010) Integration of sen-
sory and reward information during perceptual decision-making in lat-
eral intraparietal cortex (LIP) of the macaque monkey. PLoS One 5:e9308.
CrossRef Medline

Rorie AE, Newsome WT (2005) A general mechanism for decision-making
in the human brain? Trends Cogn Sci 9:41– 43. CrossRef Medline

Rumelhart DE, McClelland JL (1986) Parallel distributed processing: explo-
rations in the microstructure of cognition, Vol 1, Foundations. Cam-
bridge, MA: Massachusetts Institute of Technology.

Salzman CD, Britten KH, Newsome WT (1990) Cortical microstimulation
influences perceptual judgements of motion direction. Nature 346:174 –
177. CrossRef Medline

Schall JD (2001) Neural basis of deciding, choosing and acting. Nat Rev
Neurosci 2:33– 42. CrossRef Medline

Scherberger H, Andersen RA (2007) Target selection signals for arm reach-
ing in the posterior parietal cortex. J Neurosci 27:2001–2012. CrossRef
Medline

Selen LPJ, Shadlen MN, Wolpert DM (2012) Deliberation in the motor sys-
tem: reflex gains track evolving evidence leading to a decision. J Neurosci
32:2276 –2286. CrossRef Medline

Seo H, Barraclough DJ, Lee D (2009) Lateral intraparietal cortex and rein-
forcement learning during a mixed-strategy game. J Neurosci 29:7278 –
7289. CrossRef Medline

Shadlen MN, Newsome WT (1996) Motion perception: seeing and decid-
ing. Proc Natl Acad Sci U S A 93:628 – 633. CrossRef Medline

Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in
the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86:
1916 –1936. Medline

Shadlen MN, Kiani R, Hanks T, Churchland AK (2008) An intentional
framework. In: Better than conscious? Decision making, the human
mind, and implications for institutions (Engel C, Singer W, eds.), p 71.
Cambridge: MIT.

Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple deci-
sions. Trends Neurosci 27:161–168. CrossRef Medline

Snyder LH, Batista AP, Andersen RA (1997) Coding of intention in the
posterior parietal cortex. Nature 386:167–170. CrossRef Medline

Snyder LH, Batista AP, Andersen RA (1998) Change in motor plan, without
a change in the spatial locus of attention, modulates activity in posterior
parietal cortex. J Neurophysiol 79:2814 –2819. Medline

Thier P, Andersen RA (1998) Electrical microstimulation distinguishes dis-
tinct saccade-related areas in the posterior parietal cortex. J Neurophysiol
80:1713–1735. Medline

Tsetsos K, Gao J, McClelland JL, Usher M (2012) Using time-varying evi-
dence to test models of decision dynamics: bounded diffusion vs. the leaky
competing accumulator model. Front Neurosci 6:79. CrossRef Medline

Wardak C, Olivier E, Duhamel JR (2004) A deficit in covert attention after
parietal cortex inactivation in the monkey. Neuron 42:501–508. CrossRef
Medline

Westendorff S, Klaes C, Gail A (2010) The cortical timeline for deciding on
reach motor goals. J Neurosci 30:5426 –5436. CrossRef Medline

Yang T, Shadlen MN (2007) Probabilistic reasoning by neurons. Nature
447:1075–1080. CrossRef Medline

4318 • J. Neurosci., March 11, 2015 • 35(10):4306 – 4318 de Lafuente et al. • Accumulation of Sensory Evidence in Parietal Cortices

http://www.ncbi.nlm.nih.gov/pubmed/808592
http://dx.doi.org/10.1167/4.8.82
http://www.ncbi.nlm.nih.gov/pubmed/15005649
http://dx.doi.org/10.1038/nn.3248
http://www.ncbi.nlm.nih.gov/pubmed/23103963
http://dx.doi.org/10.1167/5.5.1
http://www.ncbi.nlm.nih.gov/pubmed/16097871
http://dx.doi.org/10.1038/nature06849
http://www.ncbi.nlm.nih.gov/pubmed/18418380
http://dx.doi.org/10.1523/JNEUROSCI.1655-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16943552
http://dx.doi.org/10.1038/22268
http://www.ncbi.nlm.nih.gov/pubmed/10421364
http://dx.doi.org/10.1007/BF00271628
http://www.ncbi.nlm.nih.gov/pubmed/4453110
http://dx.doi.org/10.1037/0033-295X.85.2.59
http://dx.doi.org/10.1038/nature08275
http://www.ncbi.nlm.nih.gov/pubmed/19693010
http://www.ncbi.nlm.nih.gov/pubmed/98614
http://dx.doi.org/10.1016/S0896-6273(03)00817-1
http://www.ncbi.nlm.nih.gov/pubmed/14715143
http://dx.doi.org/10.1371/journal.pone.0009308
http://www.ncbi.nlm.nih.gov/pubmed/20174574
http://dx.doi.org/10.1016/j.tics.2004.12.007
http://www.ncbi.nlm.nih.gov/pubmed/15668095
http://dx.doi.org/10.1038/346174a0
http://www.ncbi.nlm.nih.gov/pubmed/2366872
http://dx.doi.org/10.1038/35049054
http://www.ncbi.nlm.nih.gov/pubmed/11253357
http://dx.doi.org/10.1523/JNEUROSCI.4274-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17314296
http://dx.doi.org/10.1523/JNEUROSCI.5273-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22396403
http://dx.doi.org/10.1523/JNEUROSCI.1479-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19494150
http://dx.doi.org/10.1073/pnas.93.2.628
http://www.ncbi.nlm.nih.gov/pubmed/8570606
http://www.ncbi.nlm.nih.gov/pubmed/11600651
http://dx.doi.org/10.1016/j.tins.2004.01.006
http://www.ncbi.nlm.nih.gov/pubmed/15036882
http://dx.doi.org/10.1038/386167a0
http://www.ncbi.nlm.nih.gov/pubmed/9062187
http://www.ncbi.nlm.nih.gov/pubmed/9582248
http://www.ncbi.nlm.nih.gov/pubmed/9772234
http://dx.doi.org/10.3389/fnins.2012.00079
http://www.ncbi.nlm.nih.gov/pubmed/22701399
http://dx.doi.org/10.1016/S0896-6273(04)00185-0
http://www.ncbi.nlm.nih.gov/pubmed/15134645
http://dx.doi.org/10.1523/JNEUROSCI.4628-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20392964
http://dx.doi.org/10.1038/nature05852
http://www.ncbi.nlm.nih.gov/pubmed/17546027

	Representation of Accumulating Evidence for a Decision in Two Parietal Areas
	Introduction
	Materials and Methods
	Results
	Behavior
	Neuronal activity in MIP and LIP
	Representation of a decision variable in MIP and LIP
	A diffusion-like mechanism
	Discussion

	References

